# A Model for Fluid Drainage by the Lymphatic System

- 709 Downloads
- 3 Citations

## Abstract

This study investigates the fluid flow through tissues where lymphatic drainage occurs. Lymphatic drainage requires the use of two valve systems, primary and secondary. Primary valves are located in the initial lymphatics. Overlapping endothelial cells around the circumferential lining of lymphatic capillaries are presumed to act as a unidirectional valve system. Secondary valves are located in the lumen of the collecting lymphatics and act as another unidirectional valve system; these are well studied in contrast to primary valves. We propose a model for the drainage of fluid by the lymphatic system that includes the primary valve system. The analysis in this work incorporates the mechanics of the primary lymphatic valves as well as the fluid flow through the interstitium and that through the walls of the blood capillaries. The model predicts a piecewise linear relation between the drainage flux and the pressure difference between the blood and lymphatic capillaries. The model describes a permeable membrane around a blood capillary, an elastic primary lymphatic valve and the interstitium lying between the two.

## Keywords

Mechanics Fluid flow Lymphatic system Primary lymphatic valves Euler–Bernoulli’s beam equation Darcy’s law Schwarz Christoffel mapping## References

- Butler, S. L., Kohles, S. S., Thielke, R. J., Chen, C., & Vanderby, R. Jr. (1987). Interstitial fluid flow in tendons or ligaments: a porous medium finite element simulation.
*J. Vasc. Res.*,*35*, 742–746. Google Scholar - Dixon, J. B., Greiner, S. T., Goshev, A. A., Cote, G. L., Moore, J. E. Jr, & Zawieja, D. C. (2006). Lymph flow, shear stress, and lymphocyte velocity in rat mesenteric prenodal lymphatics.
*Microcirculation*,*13*, 597–610. CrossRefGoogle Scholar - Driscoll, T. A., & Trefethen, L. N. (2002).
*Schwarz-Christoffel Mapping*(1st ed.). Cambridge: Cambridge University Press. zbMATHCrossRefGoogle Scholar - Galie, P., & Spilker, R. L. (2009). A two-dimensional computational model of lymph transport across primary lymphatic valves.
*J. Biomech. Eng.*,*131*, 1297–1307. CrossRefGoogle Scholar - Howell, P., Kozyreff, G., & Ockendon, J. (2009).
*Applied Solid Mechanics*(1st ed.). Cambridge: Cambridge University Press. zbMATHGoogle Scholar - Ikomi, F., Hunt, J., Hanna, G., & Schmid-Schönbein, G. W. (1996). Interstitial fluid, plasma protein, colloid, and leukocyte uptake into initial lymphatics.
*J. Appl. Physiol.*,*81*, 2060–2067. Google Scholar - Leak, L. V. (1970). Electron microscopic observations on lymphatic capillaries and the structural components of the connective tissue-lymph interface.
*Microvasc. Res.*,*2*, 361–391. CrossRefGoogle Scholar - Leak, L. V. (1971). Studies on the permeability of lymphatic capillaries.
*J. Cell Biol.*,*50*, 300–323. CrossRefGoogle Scholar - Leak, L. V. (1976). The structure of lymphatic capillaries in lymph formation. In
*Federation proceedings*(Vol. 35, pp. 1863–1871). Google Scholar - Levick, J. R. (1987). Flow through interstitium and other fibrous matrices.
*J. Exp. Psychol.*,*72*, 409–439. Google Scholar - Macdonald, A. J., Arkill, K. P., Tabor, G. R., McHale, N. G., & Winlove, C. P. (2008). Modeling flow in collecting lymphatic vessels: one-dimensional flow through a series of contractile elements.
*Am. J. Physiol., Heart Circ. Physiol.*,*295*, 305–313. CrossRefGoogle Scholar - Mazzoni, M. C., Skalak, T. C., & Schmid-Schönbein, G. W. (1997). Structure of lymphatic valves in the spinotrapezius muscle of the rat. In
*Medical and biological engineering and computing*(Vol. 24, pp. 304–312). Google Scholar - Mendoza, E., & Schmid-Schönbein, G. W. (2003). A model for mechanics of primary lymphatic valves.
*J. Biomech. Eng.*,*125*, 407–414. CrossRefGoogle Scholar - Schmid-Schönbein, G. W. (1990). Microlymphatics and lymph flow.
*Phys. Rev.**70*, 987–1028. Google Scholar - Skobe, M., & Detmar, M. (2000). Structure, function, and molecular control of the skin lymphatic system.
*J. Invest. Dermatol.*,*5*, 14–19. CrossRefGoogle Scholar - Stacker, S. A., Achen, M. G., Jussila, L., Baldwin, M. E., & Alitalo, K. (2002). Lymphangiogensis and cancer metastasis.
*Nat. Rev. Cancer*,*2*, 573–583. CrossRefGoogle Scholar - Swartz, M. A. (2001). The physiology of the lymphatic system.
*Adv. Drug Deliv. Rev.*,*50*, 3–20. CrossRefGoogle Scholar - Swartz, M. A., & Boardman, K. C. Jr. (2002). The role of interstitila stress in lymphatic function and lymphangiogenesis.
*Ann. N.Y. Acad. Sci.*,*979*, 197–210. CrossRefGoogle Scholar - Swartz, M. A., Kaipainen, A., Netti, P. A., Brekken, C., Boucher, Y., Grodzinsky, A. J., & Jain, R. K. (1999). Mechanics of interstitial-lymphatic fluid transport: theoretical foundation and experimental validation.
*J. Biomech.*,*32*, 1297–1307. CrossRefGoogle Scholar - Theret, D. P., Levesque, M. J., Sato, M., Nerem, R. M., & Wheeler, L. T. (1988). The applications of a homogeneous half-space model in the analysis of endothelail cell micropipette measurements.
*J. Biomech. Eng.*,*110*, 190–199. CrossRefGoogle Scholar - Titcombe, M. S., & Ward, M. J. (2000). An asymptotic study of oxygen transport from multiple capillaries to skeletal muscle tissue.
*J. Appl. Math.*,*60*, 1767–1788. MathSciNetzbMATHGoogle Scholar