Bulletin of Mathematical Biology

, Volume 74, Issue 12, pp 2861–2874 | Cite as

The Shuttling Scaffold Model for Prevention of Yeast Pheromone Pathway Misactivation

  • Aditya P. Singh
  • Erik Andries
  • Jeremy S. Edwards
  • Stanly Steinberg
Original Article
  • 328 Downloads

Abstract

The molecular scaffold in the yeast pheromone pathway, Ste5, shuttles continuously between the nucleus and the cytoplasm. Ste5 undergoes oligomerization reaction in the nucleus. Upon pheromone stimulation, the Ste5 dimer is rapidly exported out of the nucleus and recruited to the plasma membrane for pathway activation. This clever device on part of the yeast cell is thought to prevent pathway misactivation at high enough levels of Ste5 in the absence of pheromone. We have built a spatiotemporal model of signaling in this pathway to describe its regulation. Our present work underscores the importance of spatial modeling of cell signaling networks to understand their control and functioning.

Nomenclature

ODE:

Ordinary Differential Equation

PDE:

Partial Differential Equation

Supplementary material

11538_2012_9785_MOESM1_ESM.pdf (920 kb)
Appendixes A–i (PDF 920 kB)

References

  1. Adachi, M., Fukuda, M., & Nishida, E. (1999). Two co-existing mechanisms for nuclear import of MAP kinase: passive diffusion of a monomer and active transport of a dimer. EMBO J., 18, 5347–5358. CrossRefGoogle Scholar
  2. Adam, G., & Delbruck, M. (1968). Reduction of dimensionality in biological diffusion processes. In A. Rich & N. Davidson (Eds.), Structural chemistry and molecular biology (pp. 198–215). San Francisco: Freeman. Google Scholar
  3. Brown, G. C., & Kholodenko, B. N. (1999). Spatial gradients of cellular phospho-proteins. FEBS Lett., 457, 452–454. CrossRefGoogle Scholar
  4. Choi, K. Y., Satterberg, B., Lyons, D. M., & Elion, E. A. (1994). Ste5 tethers multiple protein kinases in the MAP kinase cascade required for mating in S. cerevisiae. Cell, 78, 499–512. CrossRefGoogle Scholar
  5. Ebisuya, M., Kondoh, K., & Nishida, E. (2005). The duration, magnitude and compartmentalization of ERK MAP kinase activity: mechanisms for providing signaling specificity. J. Cell Sci., 118, 2997–3002. CrossRefGoogle Scholar
  6. Elion, E. A. (2001). The Ste5p scaffold. J. Cell Sci., 114, 3967–3978. Google Scholar
  7. Fell, D. A. (1980a). Computer simulations of the rate of change of concentration of adenosine 3′:5′-cyclic monophosphate after stimulation of adenylate cyclase activity [proceedings]. Biochem. Soc. Trans., 8, 139–140. Google Scholar
  8. Fell, D. A. (1980b). Theoretical analyses of the functioning of the high- and low-Km cyclic nucleotide phosphodiesterases in the regulation of the concentration of adenosine 3′,5′-cyclic monophosphate in animal cells. J. Theor. Biol., 84, 361–385. CrossRefGoogle Scholar
  9. Gotoh, Y., Nishida, E., Yamashita, T., Hoshi, M., Kawakami, M., & Sakai, H. (1990). Microtubule-associated-protein (MAP) kinase activated by nerve growth factor and epidermal growth factor in PC12 cells. Identity with the mitogen-activated MAP kinase of fibroblastic cells. Eur. J. Biochem., 193, 661–669. CrossRefGoogle Scholar
  10. Gregor, T., Bialek, W., de Ruyter van Steveninck, R. R., Tank, D. W., & Wieschaus, E. F. (2005). Diffusion and scaling during early embryonic pattern formation. Proc. Natl. Acad. Sci. USA, 102, 18403–18407. CrossRefGoogle Scholar
  11. Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100, 57–70. CrossRefGoogle Scholar
  12. Kholodenko, B. N., Hoek, J. B., & Westerhoff, H. V. (2000). Why cytoplasmic signalling proteins should be recruited to cell membranes. Trends Cell Biol., 10, 173–178. CrossRefGoogle Scholar
  13. Kofahl, B., & Klipp, E. (2004). Modelling the dynamics of the yeast pheromone pathway. Yeast, 21, 831–850. CrossRefGoogle Scholar
  14. Marshall, C. J. (1995). Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell, 80, 179–185. CrossRefGoogle Scholar
  15. Mayawala, K., Vlachos, D. G., & Edwards, J. S. (2005a). Computational modeling reveals molecular details of epidermal growth factor binding. BMC Cell Biol., 6, 41. CrossRefGoogle Scholar
  16. Mayawala, K., Vlachos, D. G., & Edwards, J. S. (2005b). Heterogeneities in EGF receptor density at the cell surface can lead to concave up scatchard plot of EGF binding. FEBS Lett., 579, 3043–3047. CrossRefGoogle Scholar
  17. Mayawala, K., Vlachos, D. G., & Edwards, J. S. (2006). Spatial modeling of dimerization reaction dynamics in the plasma membrane: Monte Carlo vs. continuum differential equations. Biophys. Chem., 121, 194–208. CrossRefGoogle Scholar
  18. Nern, A., & Arkowitz, R. A. (1999). A Cdc24p-Far1p-Gbetagamma protein complex required for yeast orientation during mating. J. Cell Biol., 144, 1187–1202. CrossRefGoogle Scholar
  19. Nguyen, T. T., Scimeca, J. C., Filloux, C., Peraldi, P., Carpentier, J. L., & Van Obberghen, E. (1993). Co-regulation of the mitogen-activated protein kinase, extracellular signal-regulated kinase 1, and the 90-kDa ribosomal S6 kinase in PC12 cells. Distinct effects of the neurotrophic factor, nerve growth factor, and the mitogenic factor, epidermal growth factor. J. Biol. Chem., 268, 9803–9810. Google Scholar
  20. Schroder, H. C., Muller, W. E., & Agutter, P. S. (1995). Kinetic models for nucleocytoplasmic transport of messenger RNA. J. Theor. Biol., 174, 169–177. CrossRefGoogle Scholar
  21. Shimada, Y., Gulli, M. P., & Peter, M. (2000). Nuclear sequestration of the exchange factor Cdc24 by Far1 regulates cell polarity during yeast mating. Nat. Cell Biol., 2, 117–124. CrossRefGoogle Scholar
  22. Simon, S. M., Peskin, C. S., & Oster, G. F. (1992). What drives the translocation of proteins? Proc. Natl. Acad. Sci. USA, 89, 3770–3774. CrossRefGoogle Scholar
  23. Thomas, J. (1995). Numerical partial differential equations: finite difference methods (Vol. 22). New York: Springer. MATHGoogle Scholar
  24. Toenjes, K. A., Sawyer, M. M., & Johnson, D. I. (1999). The guanine-nucleotide-exchange factor Cdc24p is targeted to the nucleus and polarized growth sites. Curr. Biol., 9, 1183–1186. CrossRefGoogle Scholar
  25. Wang, Y., & Elion, E. A. (2003). Nuclear export and plasma membrane recruitment of the Ste5 scaffold are coordinated with oligomerization and association with signal transduction components. Mol. Biol. Cell, 14, 2543–2558. CrossRefGoogle Scholar
  26. Whitmarsh, A. J., Cavanagh, J., Tournier, C., Yasuda, J., & Davis, R. J. (1998). A mammalian scaffold complex that selectively mediates MAP kinase activation. Science, 281, 1671–1674. CrossRefGoogle Scholar
  27. Yasuda, J., Whitmarsh, A. J., Cavanagh, J., Sharma, M., & Davis, R. J. (1999). The JIP group of mitogen-activated protein kinase scaffold proteins. Mol. Cell. Biol., 19, 7245–7254. Google Scholar
  28. Young, M. E., Carroad, P. A., & Bell, R. L. (1980). Estimation of diffusion-coefficients of proteins. Biotechnol. Bioeng., 22, 947–955. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2012

Authors and Affiliations

  • Aditya P. Singh
    • 1
  • Erik Andries
    • 2
    • 3
  • Jeremy S. Edwards
    • 4
    • 5
  • Stanly Steinberg
    • 2
  1. 1.PatialaIndia
  2. 2.Department of Mathematics and StatisticsUniversity of New MexicoAlbuquerqueUSA
  3. 3.Department of MathematicsCentral New Mexico Community CollegeAlbuquerqueUSA
  4. 4.Molecular Genetics and Microbiology, Cancer Research and Treatment CenterUniversity of New Mexico Health Sciences CenterAlbuquerqueUSA
  5. 5.Chemical and Nuclear EngineeringUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations