Skip to main content
Log in

Dynamics of Nephron-Vascular Network

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The paper presents a modeling study of the spatial dynamics of a nephro-vascular network consisting of individual nephrons connected via a tree-like vascular branching structure. We focus on the effects of nonlinear mechanisms that are responsible for the formation of synchronous patterns in order to learn about processes not directly amenable to experimentation. We demonstrate that: (i) the nearest nephrons are synchronized in-phase due to a vascular propagated electrical coupling, (ii) the next few branching levels display a formation of phase-shifted patterns due to hemodynamic coupling and mode elimination, and (iii) distantly located areas show asynchronous behavior or, if all nephrons and branches are perfectly identical, an infinitely long transient behavior. These results contribute to the understanding of mechanisms responsible for the highly dynamic and limited synchronization observed among groups of nephrons despite of the fairly strong interaction between the individual units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Afraimovich, V. S., & Nekorkin, V. I. (1994). Chaos of traveling waves in a discrete chain of diffusively coupled maps. Int. J. Bifurc. Chaos Appl. Sci. Eng., 4, 631–637.

    Article  MathSciNet  MATH  Google Scholar 

  • Anor, T., Grinberg, L., Baek, H., Madsen, J. R., Jayaraman, M. V., & Karniadakis, G. E. (2010). Modeling of blood flow in arterial trees. Wiley Interdiscip. Rev., Syst. Biol. Med., 2, 612–623.

    Article  Google Scholar 

  • Balanov, A., Janson, N., Postnov, D., & Sosnovtseva, O. (2009). Synchronization: From simple to complex. Berlin: Springer.

    MATH  Google Scholar 

  • Barfred, M., Mosekilde, E., & Holstein-Rathlou, N.-H. (1996). Bifurcation analysis of nephron pressure and flow regulation. Chaos, 6, 280–287.

    Article  Google Scholar 

  • Casellas, D., Dupont, M., Bouriquet, N., Moore, L. C., Artuso, A., & Mimran, A. (1994). Anatomic pairing of afferent arterioles and renin cell distribution in rat kidneys. Am. J. Physiol., 267, F931–F936.

    Google Scholar 

  • Deen, W. M., Robertson, C. R., & Brenner, B. M. (1984). A model of glomerular ultrafiltration in the rat. Am. J. Physiol., 223, 1178–1183.

    Google Scholar 

  • Diep, H. K., Vigmond, E. J., Segal, S. S., & Welsh, D. G. (2005). Defining electrical communication in skeletal muscle resistance arteries: a computational approach. J. Physiol., 568, 267–281.

    Article  Google Scholar 

  • Holstein-Rathlou, N.-H. (1987). Synchronization of proximal intratubular pressure oscillations: evidence for interaction between nephrons. Pflügers Arch., 408, 438–443.

    Article  Google Scholar 

  • Holstein-Rathlou, N.-H., & Leyssac, P. P. (1986). TGF-mediated oscillations in the proximal intratubular pressure: differences between spontaneously hypertensive rats and Wistar-Kyoto rats. Acta Physiol. Scand., 126, 333–339.

    Article  Google Scholar 

  • Holstein-Rathlou, N.-H., & Leyssac, P. P. (1987). Oscillations in the proximal intratubular pressure: A mathematical model. Am. J. Physiol., 252, F560–F572.

    Google Scholar 

  • Holstein-Rathlou, N.-H., & Marsh, D. J. (1989). Oscillations of tubular pressure, flow, anddistal chloride concentrations in rats. Am. J. Physiol., 256, F1007–F1014.

    Google Scholar 

  • Holstein-Rathlou, N.-H., & Marsh, D. J. (1990). A dynamic model of the tubuloglomerular feedback mechanism. Am. J. Physiol., 258, F1448–F1459.

    Google Scholar 

  • Holstein-Rathlou, N.-H., Sosnovtseva, O. V., Pavlov, A. N., Cupples, W. A., Sorensen, C. M., & Marsh, D. J. (2011). Nephron blood flow dynamics measured by laser speckle contrast imaging. Am. J. Physiol. Renal Physiol., 300, F319–329.

    Article  Google Scholar 

  • Jensen, K. S., Mosekilde, E., & Holstein-Rathlou, N.-H. (1986). Self-sustained oscillations and chaotic behaviour in kidney pressure regulation. Mondes Develop., 54/55, 91–109.

    Google Scholar 

  • Just, A., Wittmann, U., Ehmke, H., & Kirchheim, H. R. (1998). Autoregulation of renal blood flow in the conscious dog and the contribution of the tubuloglomerular feedback. J. Physiol., 506, 275–290.

    Article  Google Scholar 

  • Källskog, Ö., & Marsh, D. J. (1990). TGF-initiated vascular interactions between adjacent nephrons in the rat kidney. Am. J. Physiol., 259, F60–F64. Renal Fluid Electrolyte Physiol. 28.

    Google Scholar 

  • Kuramoto, Y. (1984). Chemical oscillations, waves and turbulence. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Laugesen, J. L., Sosnovtseva, O. V., Mosekilde, E., Holstein-Rathlou, N.-H., & Marsh, D. J. (2010). Coupling-induced complexity in nephron models of renal blood flow regulation. Am. J. Physiol., Regul. Integr. Comp. Physiol., 298, R997–R1006.

    Article  Google Scholar 

  • Layton, H. E., Pitman, E. B., & Moore, L. C. (2000). Limit cycle oscillations and tubuloglomerular feedback regulation of distal sodium delivery. Am. J. Physiol. Renal Physiol., 278, F287–F301.

    Google Scholar 

  • Layton, A. T., Moore, L. C., & Layton, H. E. (2009). Multistable dynamics mediated by tubuloglomerular feedback in a model of coupled nephrons. Bull. Math. Biol., 71, 515–555.

    Article  MathSciNet  MATH  Google Scholar 

  • Leyssac, P. P., & Baumbach, L. (1983). An oscillating intratubular pressure response to alterations in the loop of Henle flow in the rat kidney. Acta Physiol. Scand., 117, 415–419.

    Article  Google Scholar 

  • Leyssac, P. P., & Holstein-Rathlou, N.-H. (1989). Tubulo-glomerular feedback response: enhancement in adult spontaneously hypertensive rats and effect of anaesthetics. Pflügers Arch., 413, 267–272.

    Article  Google Scholar 

  • Lieu, D. K., Pappone, P. A., & Barakat, A. I. (2004). Differential membrane potential and ion current responses to different types of shear stress in vascular endothelial cells. Am. J. Physiol., Cell Physiol., 286, C1367–C1375.

    Article  Google Scholar 

  • Mandelbrot, B. B. (1983). The fractal geometry of nature. San Francisco: Freeman

    Google Scholar 

  • Marsh, D. J., Sosnovtseva, O. V., Mosekilde, E., & Holstein-Rathlou, N.-H. (2007). Vascular coupling induces synchronization, quasiperiodicity and chaos in a nephron tree. Chaos, 17, 015114.

    Article  Google Scholar 

  • Marsh, D. J., Toma, I., Sosnovtseva, O. V., Peti-Peterdi, J., & Holstein-Rathlou, N.-H. (2009). Electrotonic vascular signal conduction and nephron synchronization. Am. J. Physiol. Renal Physiol., 296, F751–F761.

    Article  Google Scholar 

  • Mosekilde, E. (1996). Topics in nonlinear dynamics. Applications to physics, biology, and economic systems. Singapore: World Scientific

    MATH  Google Scholar 

  • Müller-Suur, R., Ulfendahl, H. R., & Persson, A. E. (1983). Evidence for tubuloglomerular feedback in juxtamedullary nephrons of young rats. Am. J. Physiol., 244(4), F425–31.

    Google Scholar 

  • Murray, C. D. (1926). The physiological principle of minimum work. I. The vascular system and the cost of blood volumeproc. Natl. Acad. Sci. USA, 12, 207–214.

    Article  Google Scholar 

  • Nordsletten, D. A., Blackett, S., Bentley, M. D., Ritman, E. L., & Smith, N. P. (2006). Structural morphology of renal vasculature. Am. J. Physiol., Heart Circ. Physiol., 291, H296–H309.

    Article  Google Scholar 

  • Pikovsky, A., Rosenblum, M., & Kurths, J. (2001). Synchronization: A universal concept in nonlinear science. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Postnov, D. E., Sosnovtseva, O. V., Mosekilde, E., & Holstein-Rathlou, N.-H. (2001). Cooperative phase dynamics in coupled nephrons. Int. J. Mod. Phys. B, 15, 3079–3098.

    Article  Google Scholar 

  • Postnov, D. E., Sosnovtseva, O. V., & Mosekilde, E. (2005). Oscillator clustering in a resource distribution chain. Chaos, 15, 013704, pp. 12.

    Article  Google Scholar 

  • Schreiner, W., Neumann, F., Neumann, M., End, A., & Müller, M. R. (1996). Structural quantification and bifurcation symmetry in arterial tree models generated by constrained constructive optimization. J. Theor. Biol., 180, 161–174.

    Article  Google Scholar 

  • Sjöquist, M., Göransson, A., Källskog, O., & Ulfendahl, H. R. (1984). The influence of tubulo-glomerular feedback on the autoregulation of filtration rate in superficial and deep glomeruli. Acta Physiol. Scand., 122, 235–242.

    Article  Google Scholar 

  • Sosnovtseva, O. V., Pavlov, A. N., Mosekilde, E., & Holstein-Rathlou, N.-H. (2002). Bimodal oscillations in nephron autoregulation. Phys. Rev. E, 66, 061909.

    Article  Google Scholar 

  • Voets, T., Droogmans, G., & Nilius, B. (1996). Membrane currents and the resting membrane potential in cultured bovine pulmonary artery endothelial cells. J. Physiol., 497, 95–107.

    Google Scholar 

  • Wagner, A. J., Holstein-Rathlou, N.-H., & Marsh, D. J. (1997). Internephron coupling by conducted vasomotor responses in normotensive and spontaneously hypertensive rats. Am. J. Physiol., 272, F372–F379 (Renal Physiol. 41).

    Google Scholar 

  • Zamir, M. (1982). Local geometry of arterial branching. Bull. Math. Biol., 44, 597–607.

    MathSciNet  MATH  Google Scholar 

  • Zamir, M. (1999). On fractal properties of arterial trees. J. Theor. Biol., 197, 517–526.

    Article  Google Scholar 

  • Zamir, M., & Phipps, S. (1988). Network analysis of an arterial tree. Biomechanics, 21, 25–34.

    Article  Google Scholar 

Download references

Acknowledgements

The work of D.D. Postnov and D.E. Postnov was supported by RFBR grant 09-02-01049. The work of D.J. Marsh was supported by grants from the Lundbeck Foundation of Denmark. The work of N.H. Holstein Rathlou was supported by the Danish Medical Research Council and the Novo Nordisk Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Sosnovtseva.

Appendix A

Appendix A

Over the years, significant efforts have been made to develop mathematical models that can account for the experimentally observed behavior of nephrons. While early papers (Jensen et al. 1986; Holstein-Rathlou and Marsh 1990; Holstein-Rathlou and Leyssac 1987; Deen et al. 1984) have delivered a reasonably simple model (Barfred et al. 1996), recent studies (Laugesen et al. 2010; Layton et al. 2000, 2009) have been focused on detailed modeling of nephron autoregulation. In the present study, we use a simplified model (Barfred et al. 1996) that captures that main dynamical features of nephron autoregulation.

1.1 A.1 Pressure Variations

The pressure P t in the proximal tubule of nephron changes in response to differences between the in and outgoing fluid flows:

$$ \dot{P_t}= \bigl[ F_{f}(P_t, P_a,r)-F_\mathrm{reab}-F_{H} \bigr]/C_\mathrm{tub}. $$
(15)

Here, F f is the glomerular filtration rate, F reab represents the reabsorption that takes place in the proximal tubule, F H is the flow of fluid into the loop of Henle, and C tub is the elastic compliance of the tubule. The Henle flow,

$$ F_{H}=\frac{P_t-P_d}{R_{H}}, $$
(16)

is determined by the difference between the proximal P t and the distal P d tubular pressures and by the flow resistance R H . It gives a good approximation to the experimentally determined pressure-flow relation (Jensen et al. 1986). In this model, the reabsorption F reab in the proximal tubule and the flow resistance R H are treated as constants. These processes are accounted for in considerable detail in Holstein-Rathlou and Marsh (1990).

The glomerular filtration rate is given by

$$ F_{f}= ( 1-H_a ) \biggl( 1-\frac{C_a}{C_e} \biggr) \frac{P_a-P_g}{R_a} $$
(17)

as discussed in Holstein-Rathlou and Leyssac (1987). Here, the afferent hematocrit H a represents the volume fraction of blood cells in blood at the entrance to the glomerular. C a and C e are the protein concentrations of the afferent and efferent blood plasma, respectively. R a is the flow resistance of the afferent arteriole. (P a P g )/R a determines the incoming blood flow. Multiplied by (1−H a ) this gives the plasma flow. The factor (1−C a /C e ) relates the filtration rate to the change in protein concentration for the plasma in the vessel (Deen et al. 1984). To define C e , the cubic equation based on experimentally established relation between C e and glomerular osmotic pressure (Deen et al. 1984) is used. This equation is solved during each time step of numeric simulation (Barfred et al. 1996).

1.2 A.2 Tubuloglomerular Feedback

The effect of changes in the loop of Henle flow can be described by a sigmoidal relation between the muscular activation ψ of the afferent arteriole and the delayed flow through the loop of Henle:

$$ \varPsi=\varPsi_{\max}-\frac{\varPsi_{\max}-\varPsi_{\min}}{1+\exp(\alpha(3X_3/TF_{H_0}-S))}. $$
(18)

Here, Ψ max and Ψ min are the upper and lower activation limits of TGF mechanism. α referred to as TGF-feedback is the maximum slope and S the inflection point of the S-shaped curve that characterizes the TGF relation. 3X 3/T is a delayed flow into the loop of Henle and \(F_{H_{0}}\) is a normalized value of the flow through the loop of Henle.

1.3 A.3 Afferent Arteriole

The afferent arteriole is modeled as a damped second-order system

$$ \ddot{r}+ d \dot{r}=\frac{P_\mathrm{av}-P_\mathrm{eq}}{\omega}, $$
(19)

where r is the radius of afferent arteriolar normalized to its resting value. P av and P eq are average and equilibrium values of the vascular pressure in the arteriole, respectively. d is a damping coefficient, and ω is a measure of the mass relative to the elastic compliance of the arteriolar wall. The pressure P av refers to the fact that this pressure is evaluated as the average hydrostatic pressure along the length of the afferent arteriole:

$$ P_\mathrm{av}=\frac{1}{2}\biggl(P_a-(P_a-P_g) \beta\frac{R_{a0}}{R_a}+P_g\biggr) $$
(20)

with the glomerular pressure given by

$$ P_g=P_v+R_e\biggl(\frac{P_a -P_g}{R_a}-F_{f} \biggr). $$
(21)

Equations (20) and (21) express simple linear relations between flow rates and pressure drops in the arteriolar system. P v is the venous pressure. R a and R e are the flow resistances of the afferent and the efferent arterioles, R a0 is a resting value of R a . β is the fraction of the total afferent arteriolar length that responds to the TGF signal.

Table 1 Table of constant parameters
Table 2 Table of variable parameters

Analytical calculation of equilibrium pressure P eq delivers the expression with two integrals that can be solved only numerically. Instead, the following approximation was suggested in Barfred et al. (1996):

$$ P_\mathrm{eq}=1.6(r-1)+ 0.006\exp{10(r-0.8)}+\varPsi\biggl( \frac{4.7}{1+\exp{13(0.4-r)}} +7.2(r+0.9)\biggr). $$
(22)

Here, P eq is the hydrostatic pressure at which the afferent arteriole is at equilibrium for a given muscular activation Ψ and a given radius r. The first two terms represent the elastic strain properties of arteriole, whereas other terms that are proportional to Ψ represent the active (myogenic) response. Expression (22) gives good approximation within the range of physiologically relevant values of P eq and r.

1.4 A.4 List of Parameters

The values of dimension parameters were adopted from Jensen et al. (1986) where their origin and physiologically relevant range have been discussed. Dimensionless parameters were adjusted to obtain physiologically relevant behavior.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Postnov, D.D., Postnov, D.E., Marsh, D.J. et al. Dynamics of Nephron-Vascular Network. Bull Math Biol 74, 2820–2841 (2012). https://doi.org/10.1007/s11538-012-9781-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-012-9781-6

Keywords

Navigation