Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., & Watson, J. D. (1994). Molecular biology of the cell (3rd ed.). New York: Garland.
Google Scholar
Anguige, K. (2011). A one-dimensional model for the interaction between cell-to-cell adhesion and chemotactic signalling. Eur. J. Appl. Math., 22(4), 291–316.
MathSciNet
MATH
Article
Google Scholar
Anguige, K., & Schmeiser, C. (2009). A one-dimensional model of cell diffusion and aggregation, incorporating volume filling and cell-to-cell adhesion. J. Math. Biol., 58(3), 395–427.
MathSciNet
MATH
Article
Google Scholar
Armstrong, N. J., Painter, K. J., & Sherratt, J. A. (2006). A continuum approach to modelling cell-cell adhesion. J. Theor. Biol., 243(1), 98–113.
MathSciNet
Article
Google Scholar
Baker, R. E., Yates, C. A., & Erban, R. (2010). From microscopic to macroscopic descriptions of cell migration on growing domains. Bull. Math. Biol., 72(3), 719–762.
MathSciNet
MATH
Article
Google Scholar
Berg, H. C. (1975). How bacteria swim. Sci. Am., 233(2), 36–44.
Article
Google Scholar
Berg, H. C. (1993). Random walks in biology. Princeton: Princeton University Press.
Google Scholar
Bolker, B., & Pacala, S. W. (1997). Using moment equations to understand stochastically driven spatial pattern formation in ecological systems. Theor. Popul. Biol., 52(3), 179–197.
MATH
Article
Google Scholar
Brenner, M. P., Levitov, L. S., & Budrene, E. O. (1998). Physical mechanisms for chemotactic pattern formation by bacteria. Biophys. J., 74(4), 1677–1693.
Article
Google Scholar
Crampin, E. J., Gaffney, E. A., & Maini, P. K. (1999). Reaction and diffusion on growing domains: scenarios for robust pattern formation. Bull. Math. Biol., 61(6), 1093–1120.
Article
Google Scholar
Erban, R., & Othmer, H. G. (2004). From individual to collective behavior in bacterial chemotaxis. SIAM J. Appl. Math., 65(2), 361–391.
MathSciNet
MATH
Article
Google Scholar
Foty, R. A., & Steinberg, M. S. (2005). The differential adhesion hypothesis: a direct evaluation. Dev. Biol., 278(1), 255–263.
Article
Google Scholar
Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81(1), 2340–2361.
Article
Google Scholar
Keller, E. F., & Segel, L. A. (1970). Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol., 26(3), 399–415.
Article
Google Scholar
Keller, E. F., & Segel, L. A. (1971a). Model for chemotaxis. J. Theor. Biol., 30(2), 225–234.
Article
Google Scholar
Keller, E. F., & Segel, L. A. (1971b). Traveling bands of chemotactic bacteria: a theoretical analysis. J. Theor. Biol., 30(2), 235–248.
Article
Google Scholar
Khain, E., Katakowski, M., Hopkins, S., Szalad, A., Zheng, X., Jiang, F., & Chopp, M. (2011). Collective behavior of brain tumor cells: the role of hypoxia. Phys. Rev. E, 83(3), 031920.
Article
Google Scholar
Landman, K. A., Pettet, G. J., & Newgreen, D. F. (2003). Mathematical models of cell colonization of uniformly growing domains. Bull. Math. Biol., 65(2), 235–262.
Article
Google Scholar
Lieberman, M. A., & Glaser, L. (1981). Density dependent regulation of cell growth: an example of a cell-cell recognition phenomenon. J. Membr. Biol., 11, 1–11.
Google Scholar
Maini, P. K., & Solursh, M. (1991). Cellular mechanisms of pattern formation in the developing limb. Int. Rev. Cytol., 129, 91–133.
Article
Google Scholar
Mooney, J. R., & Nagorcka, B. N. (1985). Spatial patterns produced by a reaction-diffusion system in primary hair follicles. J. Theor. Biol., 115(2), 299–317.
MathSciNet
Article
Google Scholar
Morton, K. W., & Mayers, D. F. (2005). Numerical solution of partial differential equations: an introduction. Cambridge: Cambridge University Press.
MATH
Book
Google Scholar
Murray, J. D. (2002). Mathematical biology (3rd ed.). Berlin: Springer.
MATH
Google Scholar
Othmer, H. G., & Hillen, T. (2011). The diffusion limit of transport equations II: chemotaxis equations. SIAM J. Appl. Math., 62(4), 1222–1250.
MathSciNet
Article
Google Scholar
Othmer, H. G., & Schaap, P. (1998). Oscillatory cAMP signaling in the development of Dictyostelium discoideum. Comments Theor. Biol., 5, 175–282.
Google Scholar
Othmer, H. G., & Stevens, A. (1997). Aggregation, blowup, and collapse: the ABC’s of taxis in reinforced random walks. SIAM J. Appl. Math., 57(4), 1044–1081.
MathSciNet
MATH
Article
Google Scholar
Othmer, H. G., Dunbar, S. R., & Alt, W. (1988). Models of dispersal in biological systems. J. Math. Biol., 26, 263–298.
MathSciNet
MATH
Article
Google Scholar
Palsson, E., & Othmer, H. G. (2000). A model for individual and collective cell movement in Dictyostelium discoideum. Proc. Natl. Acad. Sci. USA, 97(19), 10448–10453.
Article
Google Scholar
Patlak, C. S. (1953). Random walk with persistence and external bias. Bull. Math. Biophys., 15(3), 311–338.
MathSciNet
MATH
Article
Google Scholar
Penington, C. J., Hughes, B. D., & Landman, K. A. (2011). Building macroscale models from microscale probabilistic models: a general probabilistic approach for nonlinear diffusion and multispecies phenomena. Phys. Rev. E, 84(4), 041120.
Article
Google Scholar
Simpson, M. J., Landman, K. A., Hughes, B. D., & Fernando, A. E. (2010a). A model for mesoscale patterns in motile populations. Physica A, 389(7), 1412–1424.
Article
Google Scholar
Simpson, M. J., Towne, C., McElwain, D. L. S., & Upton, Z. (2010b). Migration of breast cancer cells: understanding the roles of volume exclusion and cell-to-cell adhesion. Phys. Rev. E, 82(4), 041901.
Article
Google Scholar
Steinberg, M. S. (1962a). On the mechanism of tissue reconstruction by dissociated cells, I. Population kinetics, differential adhesiveness, and the absence of directed migration. Proc. Natl. Acad. Sci. USA, 48(9), 1577–1582.
Article
Google Scholar
Steinberg, M. S. (1962b). Mechanism of tissue reconstruction by dissociated cells, II. Time-course of events. Science, 137(3532), 762–763.
Article
Google Scholar
Steinberg, M. S. (1962c). On the mechanism of tissue reconstruction by dissociated cells, III. Free energy relations and the reorganization of fused, heteronomic tissue fragments. Proc. Natl. Acad. Sci. USA, 48(10), 1769–1776.
Article
Google Scholar
Woolley, T., Baker, R. E., Gaffney, E. A., & Maini, P. K. (2011). Influence of stochastic domain growth on pattern nucleation for diffusive systems with internal noise. Phys. Rev. E, 84(4), 041905.
Article
Google Scholar