Bulletin of Mathematical Biology

, Volume 74, Issue 12, pp 2793–2809 | Cite as

Modelling Cell Migration and Adhesion During Development

  • Robin N. Thompson
  • Christian A. Yates
  • Ruth E. Baker
Original Article


Cell–cell adhesion is essential for biological development: cells migrate to their target sites, where cell–cell adhesion enables them to aggregate and form tissues. Here, we extend analysis of the model of cell migration proposed by Anguige and Schmeiser (J. Math. Biol. 58(3):395–427, 2009) that incorporates both cell–cell adhesion and volume filling. The stochastic space-jump model is compared to two deterministic counterparts (a system of stochastic mean equations and a non-linear partial differential equation), and it is shown that the results of the deterministic systems are, in general, qualitatively similar to the mean behaviour of multiple stochastic simulations. However, individual stochastic simulations can give rise to behaviour that varies significantly from that of the mean. In particular, individual simulations might admit cell clustering when the mean behaviour does not. We also investigate the potential of this model to display behaviour predicted by the differential adhesion hypothesis by incorporating a second cell species, and present a novel approach for implementing models of cell migration on a growing domain.


Mathematical modelling Cell–cell adhesion Differential adhesion Cell sorting Domain growth 



RNT would like to thank the Centre for Mathematical Biology, University of Oxford, for the opportunity to carry out this research, the Nuffield Foundation for the bursary that allowed this research to begin, and BBSRC for research funding via the Genes to Organisms doctoral training award. He would also like to thank Endre Suli, Michael Thompson and Nik Cunniffe for helpful discussions and support. CAY would like to thank Christ Church College, Oxford, for a Junior Research Fellowship.


  1. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., & Watson, J. D. (1994). Molecular biology of the cell (3rd ed.). New York: Garland. Google Scholar
  2. Anguige, K. (2011). A one-dimensional model for the interaction between cell-to-cell adhesion and chemotactic signalling. Eur. J. Appl. Math., 22(4), 291–316. MathSciNetzbMATHCrossRefGoogle Scholar
  3. Anguige, K., & Schmeiser, C. (2009). A one-dimensional model of cell diffusion and aggregation, incorporating volume filling and cell-to-cell adhesion. J. Math. Biol., 58(3), 395–427. MathSciNetzbMATHCrossRefGoogle Scholar
  4. Armstrong, N. J., Painter, K. J., & Sherratt, J. A. (2006). A continuum approach to modelling cell-cell adhesion. J. Theor. Biol., 243(1), 98–113. MathSciNetCrossRefGoogle Scholar
  5. Baker, R. E., Yates, C. A., & Erban, R. (2010). From microscopic to macroscopic descriptions of cell migration on growing domains. Bull. Math. Biol., 72(3), 719–762. MathSciNetzbMATHCrossRefGoogle Scholar
  6. Berg, H. C. (1975). How bacteria swim. Sci. Am., 233(2), 36–44. CrossRefGoogle Scholar
  7. Berg, H. C. (1993). Random walks in biology. Princeton: Princeton University Press. Google Scholar
  8. Bolker, B., & Pacala, S. W. (1997). Using moment equations to understand stochastically driven spatial pattern formation in ecological systems. Theor. Popul. Biol., 52(3), 179–197. zbMATHCrossRefGoogle Scholar
  9. Brenner, M. P., Levitov, L. S., & Budrene, E. O. (1998). Physical mechanisms for chemotactic pattern formation by bacteria. Biophys. J., 74(4), 1677–1693. CrossRefGoogle Scholar
  10. Crampin, E. J., Gaffney, E. A., & Maini, P. K. (1999). Reaction and diffusion on growing domains: scenarios for robust pattern formation. Bull. Math. Biol., 61(6), 1093–1120. CrossRefGoogle Scholar
  11. Erban, R., & Othmer, H. G. (2004). From individual to collective behavior in bacterial chemotaxis. SIAM J. Appl. Math., 65(2), 361–391. MathSciNetzbMATHCrossRefGoogle Scholar
  12. Foty, R. A., & Steinberg, M. S. (2005). The differential adhesion hypothesis: a direct evaluation. Dev. Biol., 278(1), 255–263. CrossRefGoogle Scholar
  13. Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81(1), 2340–2361. CrossRefGoogle Scholar
  14. Keller, E. F., & Segel, L. A. (1970). Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol., 26(3), 399–415. CrossRefGoogle Scholar
  15. Keller, E. F., & Segel, L. A. (1971a). Model for chemotaxis. J. Theor. Biol., 30(2), 225–234. CrossRefGoogle Scholar
  16. Keller, E. F., & Segel, L. A. (1971b). Traveling bands of chemotactic bacteria: a theoretical analysis. J. Theor. Biol., 30(2), 235–248. CrossRefGoogle Scholar
  17. Khain, E., Katakowski, M., Hopkins, S., Szalad, A., Zheng, X., Jiang, F., & Chopp, M. (2011). Collective behavior of brain tumor cells: the role of hypoxia. Phys. Rev. E, 83(3), 031920. CrossRefGoogle Scholar
  18. Landman, K. A., Pettet, G. J., & Newgreen, D. F. (2003). Mathematical models of cell colonization of uniformly growing domains. Bull. Math. Biol., 65(2), 235–262. CrossRefGoogle Scholar
  19. Lieberman, M. A., & Glaser, L. (1981). Density dependent regulation of cell growth: an example of a cell-cell recognition phenomenon. J. Membr. Biol., 11, 1–11. Google Scholar
  20. Maini, P. K., & Solursh, M. (1991). Cellular mechanisms of pattern formation in the developing limb. Int. Rev. Cytol., 129, 91–133. CrossRefGoogle Scholar
  21. Mooney, J. R., & Nagorcka, B. N. (1985). Spatial patterns produced by a reaction-diffusion system in primary hair follicles. J. Theor. Biol., 115(2), 299–317. MathSciNetCrossRefGoogle Scholar
  22. Morton, K. W., & Mayers, D. F. (2005). Numerical solution of partial differential equations: an introduction. Cambridge: Cambridge University Press. zbMATHCrossRefGoogle Scholar
  23. Murray, J. D. (2002). Mathematical biology (3rd ed.). Berlin: Springer. zbMATHGoogle Scholar
  24. Othmer, H. G., & Hillen, T. (2011). The diffusion limit of transport equations II: chemotaxis equations. SIAM J. Appl. Math., 62(4), 1222–1250. MathSciNetCrossRefGoogle Scholar
  25. Othmer, H. G., & Schaap, P. (1998). Oscillatory cAMP signaling in the development of Dictyostelium discoideum. Comments Theor. Biol., 5, 175–282. Google Scholar
  26. Othmer, H. G., & Stevens, A. (1997). Aggregation, blowup, and collapse: the ABC’s of taxis in reinforced random walks. SIAM J. Appl. Math., 57(4), 1044–1081. MathSciNetzbMATHCrossRefGoogle Scholar
  27. Othmer, H. G., Dunbar, S. R., & Alt, W. (1988). Models of dispersal in biological systems. J. Math. Biol., 26, 263–298. MathSciNetzbMATHCrossRefGoogle Scholar
  28. Palsson, E., & Othmer, H. G. (2000). A model for individual and collective cell movement in Dictyostelium discoideum. Proc. Natl. Acad. Sci. USA, 97(19), 10448–10453. CrossRefGoogle Scholar
  29. Patlak, C. S. (1953). Random walk with persistence and external bias. Bull. Math. Biophys., 15(3), 311–338. MathSciNetzbMATHCrossRefGoogle Scholar
  30. Penington, C. J., Hughes, B. D., & Landman, K. A. (2011). Building macroscale models from microscale probabilistic models: a general probabilistic approach for nonlinear diffusion and multispecies phenomena. Phys. Rev. E, 84(4), 041120. CrossRefGoogle Scholar
  31. Simpson, M. J., Landman, K. A., Hughes, B. D., & Fernando, A. E. (2010a). A model for mesoscale patterns in motile populations. Physica A, 389(7), 1412–1424. CrossRefGoogle Scholar
  32. Simpson, M. J., Towne, C., McElwain, D. L. S., & Upton, Z. (2010b). Migration of breast cancer cells: understanding the roles of volume exclusion and cell-to-cell adhesion. Phys. Rev. E, 82(4), 041901. CrossRefGoogle Scholar
  33. Steinberg, M. S. (1962a). On the mechanism of tissue reconstruction by dissociated cells, I. Population kinetics, differential adhesiveness, and the absence of directed migration. Proc. Natl. Acad. Sci. USA, 48(9), 1577–1582. CrossRefGoogle Scholar
  34. Steinberg, M. S. (1962b). Mechanism of tissue reconstruction by dissociated cells, II. Time-course of events. Science, 137(3532), 762–763. CrossRefGoogle Scholar
  35. Steinberg, M. S. (1962c). On the mechanism of tissue reconstruction by dissociated cells, III. Free energy relations and the reorganization of fused, heteronomic tissue fragments. Proc. Natl. Acad. Sci. USA, 48(10), 1769–1776. CrossRefGoogle Scholar
  36. Woolley, T., Baker, R. E., Gaffney, E. A., & Maini, P. K. (2011). Influence of stochastic domain growth on pattern nucleation for diffusive systems with internal noise. Phys. Rev. E, 84(4), 041905. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2012

Authors and Affiliations

  • Robin N. Thompson
    • 1
    • 2
  • Christian A. Yates
    • 1
  • Ruth E. Baker
    • 1
  1. 1.Centre for Mathematical Biology, Mathematical InstituteUniversity of OxfordOxfordUK
  2. 2.Theoretical and Computational Epidemiology Group, Department of Plant SciencesUniversity of CambridgeCambridgeUK

Personalised recommendations