Skip to main content

Advertisement

Log in

Investigating Alcohol Consumption as a Risk Factor for HIV Transmission in Heterosexual Settings in Sub-Saharan African Communities

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Alcohol consumption and abuse is widespread in sub-Saharan Africa where most HIV infections occur and has been associated with risky sexual behaviors. It may therefore be one of the most common, potentially modifiable HIV risk factors in this region. A deterministic system of ordinary differential equations incorporating heterogeneity and biased sexual preferences is formulated to assess the effects of alcohol consumption on the transmission dynamics of the disease in heterosexual settings. Extensive qualitative analysis of the model is carried out and epidemic threshold such as the alcohol-induced reproductive number \(({\mathcal{R}}_{A})\), and equilibria are derived and their stabilities examined. The disease-free equilibrium is found to be globally attracting whenever the reproductive number is less than unity. In the model, heterosexuality is the source of transmissions, and therefore, targeting a reduction of the basic reproductive number \(({\mathcal{R}}_{0})\) should be primary objective for any intervention programme. We show that the preference to form partnerships amongst the heterogeneous groups influences the severity of disease and its evolution, and consequently the rate of partnership formation between females and alcohol consumers and their relative infectiousness over nondrinkers has a huge positive correlation with the alcohol-induced reproductive number and hence the epidemic. The proportion or absolute number of drinkers is shown to have minimal influence on the disease dynamics, and in a community with alcohol consumers, it is more prudent to reduce their risk sexual behavior rather than to fight the spread of alcohol consumption. Thus, intervention measures targeted at reducing heterogeneous group interactions and behavior change are the key to disease control in these settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson, R. M., & May, R. M. (1991). Infectious diseases of humans. London: Oxford University Press.

    Google Scholar 

  • Arriola, L., & Hyman, J. (2005). Lecture notes, forward and adjoint sensitivity analysis: with applications in dynamical systems, linear algebra and optimisation, Mathematical and Theoretical Biology Institute, Summer.

    Google Scholar 

  • Baggaley, R. F., White, R. G., & Boily, M. C. (2008). Systematic review of orogenital HIV-1 transmission probabilities. Int. J. Epidemiol., 37(6), 1255–1265.

    Article  Google Scholar 

  • Bailey, R. C., Neema, S., & Othieno, R. (1999). Sexual behaviors and other HIV risk factors in circumcised and uncircumcised men in Uganda. J. Acquir. Immune Defic. Syndr., 22, 294–301.

    Article  Google Scholar 

  • Blythe, P. S., & Castillo-Chavez, C. (1989). Like with like preference and sexual mixing models. Math. Biosci., 96, 221–238.

    Article  MATH  Google Scholar 

  • Boily, M. C., Baggaley, R. F., Wang, L., Masse, B., White, R. G., Hayes, R. J., & Alary, M. (2009). Heterosexual risk of HIV-1 infection per sexual act: systematic review and meta-analysis of observational studies. Lancet Infect. Dis., 9, 118–129.

    Article  Google Scholar 

  • Breierova, L., vChoudhari, M., & Forrester, J. W. (2001). An introduction to sensitivity analysis, Massachusetts Institute of Technology.

    Google Scholar 

  • Busenserg, S., & Chavez, C. C. (1991). A general solution of the problem of mixing of subpopulations and its application to risk, and age structured epidemic models of the spread of AIDS. IMA J. Math. Appl. Med. Biol., 8, 1–29.

    Article  MathSciNet  Google Scholar 

  • Carr, J. (1981). Applications centre manifold theory. New York: Springer.

    Book  MATH  Google Scholar 

  • Castillo-Chavez, C., & Song, B. (2004). Dynamical models of tuberculosis and their applications. Math. Biosci. Eng., 1(2), 361–404.

    Article  MathSciNet  MATH  Google Scholar 

  • Castillo-Chavez, C., & Yakubu, A. (2003). Mathematical models of isolation and quarantine. Am. Med. Assoc., 290(21), 2876–2877.

    Article  Google Scholar 

  • Castillo-Chavez, C., Feng, Z., & Huang, W. (2002). On the computation of \({\mathcal{R}}_{0}\) and its role on global stability. math.la.asu.edu/chavez/2002/JB276.pdf, accessed 20–09–2010.

  • Chronicle (2012). Men part of solution in reducing HIV infections. http://www.chronicle.co.zw (accessed 07-02-2012).

  • Clift, S., Anemona, A., Watson-Jones, D., Kanga, L., Ndeki, L., & Changalucha, J. (2003). Variations of HIV and STI prevalences assault among south African adolescents. Child Abuse Negl., 28, 683–696.

    Google Scholar 

  • Cook, R. L., & Clark, D. (2005). Is there an association between alcohol consumption and sexually transmitted diseases? A systematic review of sexually transmitted diseases. Sex. Transm. Dis., 32, 156–164.

    Article  Google Scholar 

  • Del Valle, S. Y., Hyman, J. M., Hethcote, C., & Eubank, S. G. (2007). Mixing patterns between age groups in social networks. Soc. Netw., 29, 539–554.

    Article  Google Scholar 

  • Diekmann, O., Heesterbeek, J. A. P., & Metz, J. A. P. (1990). On the definition and computation of the basic reproductive ratio \({\mathcal{R}}_{0}\) in models for infectious diseases in heterogeneous populations. J. Math. Biol., 28, 365–382.

    Article  MathSciNet  MATH  Google Scholar 

  • Dunkle, K. L., Jewkes, R. K., Brown, H. C., Gray, G. E., McIntryre, J. A., & Harlow, S. D. (2004). Transactional sex among women in Soweto, South Africa: prevalence, risk factors and association with HIV infection. Soc. Sci. Med., 59, 1581–1592.

    Article  Google Scholar 

  • Fan, M., Chowa, L., & Feng, Z. (2011). Dynamics of a multi-group epidemiological model with group-targeted vaccination strategies. J. Theor. Biol., 291, 56–64.

    Article  Google Scholar 

  • Fritz, K. E., Woelk, G. B., Bassett, M. T., McFarland, W. C., Routh, J. A., & Tobaiwa, O. (2002). The association between alcohol use, sexual risk behavior, and HIV infection among men attending beer halls in Harare, Zimbabwe. AIDS Behav., 6, 221–228.

    Article  Google Scholar 

  • Gorman, D. M., Mezic, J., Mezic, I., & Gruenewald, P. (2006). Agent-based modelling of drinking behavior: a preliminary model and potential applications to theory and practice. Am. J. Publ. Health, 96(11), 2055–2060.

    Article  Google Scholar 

  • Heck, A. (2009). Modelling intake and clearance of alcohol in humans; University of Amsterdam, AMSTEL Institute, http://staff.science.uva.nl/~heck/Research/art/ICTMT8_2.pdf (accessed 21 December 2009).

  • Hethcote, H. W. (2000). The mathematics of infectious diseases. SIAM Rev., 42(4), 599–653.

    Article  MathSciNet  MATH  Google Scholar 

  • Hethcote, H. W., & Van Ark, W. J. (1987). Epidemiological models for heterogeneous populations: proportional mixing, parameter estimation and immunisation programs. Math. Biosci., 84, 85–118.

    Article  MathSciNet  MATH  Google Scholar 

  • Hyman, J. M., & Stanley, J. L. (1997). Disease transmission with biased partnership selection. Appl. Numer. Math., 24, 379–392.

    Article  MathSciNet  MATH  Google Scholar 

  • Jacquez, A. J., Simon, C. P., Koopman, J., Arbor, A., Sattenspiel, L., & Perry, T. (1988). Modeling and analyzing HIV transmission: the effect of contact patterns. Math. Biosci., 92, 119–199.

    Article  MathSciNet  MATH  Google Scholar 

  • Jewkes, R., Levin, J., & Penn-Kekana, L. (2002). Risk factors for domestic violence: findings from a South African cross-sectional study. Soc. Sci. Med., 55, 1603–1617.

    Article  Google Scholar 

  • Jones, D. L., Ross, D., Weiss, S. M., Bhat, G., & Chitalu, N. (2005). Influence of partner participation on sexual risk behavior reduction among HIV-positive Zambian women. J. Urban Health, 82, 92–100.

    Google Scholar 

  • Kapiga, S. H., Sam, N. E., Shao, J. F., Masenga, E. J., Renjifo, B., & Kiwelu, I. E. (2003). Herpes simplex virus type 2 infections among female bar and hotel workers in northern Tanzania: prevalence and risk factors. Sex. Transm. Dis., 30, 187–192.

    Article  Google Scholar 

  • King, G., Flisher, A. J., Noubary, F., Reece, R., Marais, A., & Lombard, C. (2004). Substance abuse and behavioral correlates of sexual assault among South African adolescents. Child Abuse Negl., 28, 683–696.

    Article  Google Scholar 

  • Koenig, M. A., Lutalo, T., Zhao, F., Nalugoda, F., Wabwire-Mangen, F., & Kiwanuka, N. (2003). Domestic violence in rural Uganda: evidence from a community-based study. Bull. World Health Organ., 81, 53–60.

    Google Scholar 

  • Koopman, J. S., Simon, C. P., Jacquez, J. A., & Park, T. S. (1989). Selective contact within structured mixing with an application to HIV transmission risk from oral and anal sex. In C. Castillo-Chavez (Ed.), Lecture notes in biomathematics: Vol. 83. Mathematical and statistical approaches to AIDS epidemiology (pp. 316–348). New York: Springer.

    Chapter  Google Scholar 

  • Lajmanovich, A., & Yorke, J. A. (1980). A deterministic model of gonorrea in a non-homogeneous population. Math. Biosci., 52, 227–240.

    Article  MathSciNet  Google Scholar 

  • Lakshmikantham, V., Leela, S., & Martynyuk, A. A. (1989). Stability analysis of nonlinear systems (pp. 1–315). New York: Dekker.

    MATH  Google Scholar 

  • Lennox, R., Steele, P., Zarkin, G. A., & Bray, J. W. (1998). The differential effects of alcohol consumption and dependence on adverse alcohol-related consequences: implications for the workforce. Drug Alcohol Depend., 50, 211–220.

    Article  Google Scholar 

  • Lewis, J. J. C., Garnett, G. P., Mhlanga, S., Nyamukapa, C. A., Donnelly, C. A., & Gregson, S. (2005). Beer halls as a focus for HIV prevention activities in rural Zimbabwe. Sex. Transm. Dis., 32, 364–369.

    Article  Google Scholar 

  • Mataure, P., McFarland, W., Fritz, K., Woelk, G., Ray, S., & Rutherford, G. (2002). Alcohol use and high-risk sexual behavior among adolescents and young adults in Harare, Zimbabwe. AIDS Behav., 6(3), 211–219.

    Article  Google Scholar 

  • Mbulaiteyea, S. M., Ruberantwaria, A., Nakiyingia, J. S., Carpenter, L. M., Kamalia, A., & Whitwortha, J. (2000). Alcohol and HIV: a study among sexually active adults in rural southwest Uganda. Int. J. Epidemiol., 32, 228–229.

    Google Scholar 

  • Morojele, N. K., Kachieng’a, M. A., Mokoko, E., Nkoko, M. A., Parry, C. D. H., & Nkowane, A. M. (2006). Alcohol use and sexual behavior among risky drinkers and bar and shebeen patrons in Gauteng province, South Africa. Soc. Sci. Med., 62, 217–227.

    Article  Google Scholar 

  • Mubayi, A., Greenwood, P. E., Castillo-Chavez, C., Gruenewald, P. J., & Gorman, D. M. (2010). The impact of relative residence times on the distribution of heavy drinkers in highly distinct environments. Socio-Econ. Plan. Sci., 44, 45–46.

    Article  Google Scholar 

  • Mukandavire, Z. (2006). A theoretical assessment of HIV/AIDS intervention strategies with some application to Zimbabwe. Ph.D. thesis, National University of Science and Technology, Bulawayo, Zimbabwe.

  • Mukandavire, Z., & Garira, W. (2006). HIV/AIDS model for assessing the effects of prophylactic sterilizing vaccines, condoms and treatment with amelioration. J. Biol. Syst., 14(3), 323–355.

    Article  MATH  Google Scholar 

  • Mukandavire, Z., & Garira, W. (2007). Sex-structured HIV/AIDS model to analyse the effects of condom use with application to Zimbabwe. J. Math. Biol., 54(5), 669–699.

    Article  MathSciNet  MATH  Google Scholar 

  • Mukandavire, Z., Chiyaka, C., Magombedze, G., Musuka, G., & Malunguza, N. (2009a). Assessing the effects of homosexuals and bisexuals on the intrinsic dynamics of HIV/AIDS in African heterosexual settings. Math. Comput. Model., 49(9–10), 1869–1882.

    Article  MathSciNet  MATH  Google Scholar 

  • Mukandavire, Z., Malunguza, N., Tchuenche, J. M., & Chiyaka, C. (2009b). HIV/AIDS model assessing the effects of gender-inequality affecting women in African heterosexual settings. Int. J. Biomath., 3(1), 43–67.

    Article  MathSciNet  Google Scholar 

  • Myer, L., Matthews, C., & Little, F. (2002). Condom use and sexual behaviors among individuals procuring free male condoms in south Africa: a prospective study. Sex. Transm. Dis., 29, 239–241.

    Article  Google Scholar 

  • Nold, A. (1980). Heterogeneity in disease-transmission modelling. Math. Biosci., 5, 227–240.

    Article  MathSciNet  Google Scholar 

  • Phiri, G. (2002). Alcohol abuse soars. The Weekend Tribune, 16–17 November. http://www.wtribune.co.zw/no16-no17/columns/003.htm (accessed 21 July 2011).

  • Phorano, O. D., Nthomang, K., & Ntseane, D. (2005). Alcohol abuse, gender-based violence and HIV/AIDS in Botswana: establishing the link based on empirical evidence. Sahara: J. Soc. Aspects HIV/AIDS, 2, 188–202.

    Article  Google Scholar 

  • Podder, C. N., Sharomi, O., Gumel, A. B., & Strawbridge, E. (2011). Mathematical analysis of a model for assessing the impact of anti retroviral therapy voluntary testing and condom use in curtailing the spread of HIV. Differ. Equ. Dyn. Syst., 19(4), 283–302.

    Article  MathSciNet  Google Scholar 

  • Seth, C., Kalichman, L. C., Simbayi, M. K., Demetria, C., & Sean, J. (2006). Alcohol use and sexual risks for HIV/AIDS in sub-Saharan Africa: systematic review of empirical findings. Soc. Prev. Res., 8(2), 141–151.

    Google Scholar 

  • Simbayi, L. C., Mwaba, K., & Kalichman, S. (2006). Perceptions of STI clinic attenders about HIV/AIDS and alcohol as a risk factor with regard to HIV infection in South Africa: implications for HIV prevention. Soc. Behav. Pers., 34(5), 535–544.

    Article  Google Scholar 

  • Tennenbaum, S., Kassem, T. G., Roudenko, S., & Castillo-Chavez, C. (2006). The role of transactional sex in spreading HIV in Nigeria. American Mathematical Society., 410, 367–389.

    MathSciNet  Google Scholar 

  • Thomas, G., & Lungu, E. M. (2009). The influence of heavy alcohol consumption on HIV infection and progression. J. Biol. Syst., 17(4), 685–712.

    Article  MathSciNet  Google Scholar 

  • UNAIDS (2000) Report on the global HIV/AIDS epidemic. http://data.unaids.org/pub/Report/2000 (accessed 07–02–2012).

  • UNAIDS (2004) Regional report on HIV/AIDS. http://www.undp.org (accessed 25–11–2011).

  • UNAIDS (2006a). AIDS epidemic update. http://www.unaids.org (accessed 25–11–2011).

  • UNAIDS (2006b) Report on the Global HIV/AIDS Epidemic, Joint United Nations Programme on HIV/AIDS. http://www.unaids.org, UNAIDS (accessed 25–11–2011).

  • Van den Driessche, P., & Watmough, J. (2002). Reproductive numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci., 180, 29–48.

    Article  MathSciNet  MATH  Google Scholar 

  • Wechsberg, W. M., Luseno, W. K., & Lam, W. K. (2005). Violence against substance-abusing South African sex workers: intersection with culture and HIV risk. AIDS Care, 17, S55–S64.

    Article  Google Scholar 

  • Weir, S. S., Pailman, C., Mahlalela, X., Coetzee, N., Meidany, F., & Boerma, J. T. (2003). From people to places: focusing AIDS prevention efforts where it matters most. AIDS, 17, 895–903.

    Article  Google Scholar 

  • Weiser, S. D., Leiter, K., Heisler, M., McFarland, W., & Percy-de Korte, F. (2006). A population-based study on alcohol and high-risk sexual behaviors in Botswana. PLoS Med., 3(10), 1940–1948.

    Google Scholar 

  • Zhou, X., & Cui, J. (2011). Modeling and stability analysis for a cholera model with vaccination. Math. Methods Appl. Sci., 34, 1711–1724.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

N.J.M. acknowledges with thanks the financial support of the National University of Science and Technology and the Research Council of Zimbabwe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. J. Malunguza.

Appendices

Appendix A

We now prove result in Lemma 4.

Proof

We make the following change of variables in order to use the Center Manifold theory (Carr 1981) as described in Castillo-Chavez and Song (2004) (Theorem 4.1) to establish the local asymptotic stability of the endemic equilibrium \(S_{f}=x_{1}, I_{f}=x_{2}, A_{f}=x_{3}, S_{m_{1}}=x_{4}, S_{m_{2}}=x_{5}, I_{m_{1}}=x_{6}, I_{m_{2}}=x_{7},\ \mbox{and}\ A_{m}=x_{8}\), so that \(N=\sum^{8}_{n=1}x_{n}\). We now use the vector notation X=(x 1,x 2,x 3,x 4,x 5,x 6,x 7,x 8)T. Then, model system (8) can be written in the form \(\frac{dX}{dt}=F=(f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}, f_{7}, f_{8})^{T}\) such that

$$ \left \{ \begin{array}{l} x'_1(t)=f_1= \pi\varLambda-\beta_m c_f\frac{x_6\rho_{fm_1}+\vartheta x_7\rho_{fm_2}}{\sum^{7}_{n=4}x_n}x_1-(\alpha+\mu)x_1,\\ \noalign{\vspace*{6pt}} x'_2(t)=f_2= \beta_m c_f\frac{x_6\rho_{fm_1}+\vartheta x_7\rho_{fm_2}}{\sum^{7}_{n=4}x_n}x_1-(\gamma+\alpha+\mu)x_2,\\ \noalign{\vspace*{6pt}} x'_3(t)=f_3= \gamma x_2 - (\nu+\mu)x_3,\\ \noalign{\vspace*{6pt}} x'_4(t)=f_4= (1-\pi)\varLambda-\beta_f c_m\rho_{m_1f}\frac{x_2}{\sum^{2}_{n=1}x_n}x_4-(\alpha+\delta+\mu)x_4,\\ \noalign{\vspace*{6pt}} x'_5(t)=f_5= \delta x_4-\beta_f c_m\rho_{m_2f}\vartheta\frac{x_2}{\sum^{2}_{n=1}x_n}x_5-(\alpha+\mu)x_5,\\ \noalign{\vspace*{6pt}} x'_6(t)=f_6= \beta_f c_m\rho_{m_1f}\frac{x_2}{\sum^{2}_{n=1}x_n}x_4-(\gamma+\alpha+\delta+\mu)x_6,\\ \noalign{\vspace*{6pt}} x'_7(t)=f_7= \delta x_6+ \beta_f c_m\rho_{m_2f}\vartheta\frac{x_2}{\sum^{2}_{n=1}x_n}x_5-(\gamma+\alpha+\mu)x_7,\\ \noalign{\vspace*{6pt}} x'_8(t)=f_8= \gamma(x_6+x_7)-(\nu+\mu)x_8. \end{array} \right . $$
(18)

The Jacobian matrix of transformed system (18) at the disease-free equilibrium is given by

(19)

where \(C_{1}=\frac{\pi c_{f}\beta_{m}\rho_{fm_{1}}}{(1-\pi)}\ \mbox{and}\ C_{2}=\frac{(1- \pi)(\alpha+\mu)c_{m}\beta_{f}\rho_{fm_{1}}}{\pi(\alpha+\delta+\mu)}\), and the K i ’s are as defined before. We deduce from the Jacobian that

It was shown in (16) that model system (8) is highly sensitive to changes in \({\mathcal{R}}_{A}\) and therefore its components. Taking β m as a bifurcation point, considering the case \({\mathcal{R}}_{A}=1\), and solving for \(\beta^{*}_{m}\) gives

The linearized system of the transformed equations (18) with \(\beta^{*}_{m}=\beta_{m}\) has a simple zero eigenvalue. Hence, the Center Manifold Theory (Carr 1981) can be used to analyze the dynamics of system (18) near β =β m . It can be shown that the Jacobian of (18) at \(\beta^{*}_{m}=\beta_{m}\) has a right eigenvector associated with the zero eigenvalue given by u=[u 1,u 2,u 3,u 4,u 5,u 6,u 7,u 8]T, where

$$ \left \{ \begin{array}{l} u_2=u_2>0,\qquad u_4 =\frac{(\pi-1)(\alpha +\mu) c_m u_2\beta_f}{\pi(\alpha+\delta+\mu)^2}<0,\\ \noalign{\vspace*{6pt}} u_5 =-\frac{(1-\pi)\delta c_mu_2\beta_f((\alpha+\mu)\rho_{fm_1}+(\alpha+\delta+\mu)\rho_{fm_2})}{\pi(\alpha+\mu)(\alpha+\delta+\mu)^2}<0,\\ \noalign{\vspace*{6pt}} u_7 =-\frac{(1-\pi)\delta c_mu_2\beta_f\rho_{fm_2}}{\pi(\alpha+\gamma+\mu)(\alpha+\delta+\mu)}>0,\\ \noalign{\vspace*{6pt}} u_1 = -\frac{c_f c_mu_2\beta_f\beta_m((\alpha+\mu)\rho^2_{fm_1}+\delta\vartheta^2\rho^2_{fm_2})}{(\alpha+\mu)(\alpha+\gamma+ \mu)(\alpha+\delta+\mu)}<0,\\ \noalign{\vspace*{6pt}} u_3 = \frac{\gamma u_2}{(\mu + \nu)}>0,\qquad u_8 = \frac{(1-\pi)\gamma c_m u_2\beta_f((\alpha+\mu)\rho_{fm_1}+\delta\rho_{fm_2})}{\pi(\alpha+\gamma+\mu)(\alpha+\delta+\mu)(\mu+\nu)}>0\\ \noalign{\vspace*{6pt}} u_6 = \frac{(1- \pi)(\alpha+\mu) c_m u_2\beta_f}{\pi(\alpha+\delta+\mu)(\alpha+\gamma+\delta+\mu)}>0. \end{array} \right . $$
(20)

The left eigenvector of J(ξ 0) associated with the zero eigenvalue at β =β m is given by v=[v 1,v 2,v 3,v 4,v 5,v 6,v 7,v 8], where

$$ \left \{ \begin{array}{l} v_1 = v_3 = v_4 = v_5 = v_8=0,\\ \noalign{\vspace*{6pt}} v_2 = v_2>0,\qquad v_6 = \frac{\pi c_fv_2\beta_m\rho_{fm_1}}{(1-\pi)(\alpha+\gamma+\mu)}>0,\\ v_7 = \frac{\pi\vartheta c_fv_2\beta_m\rho_{fm_2}}{(1-\pi)(\alpha+\gamma+\mu)}>0. \end{array} \right . $$
(21)

For system (18), the associated nonzero partial derivatives of F at the disease-free equilibrium are given by

$$ \left \{ \begin{array}{l} \frac{\partial f^2_2}{\partial x_1\partial x_6}=\frac{\partial f^2_2}{\partial x_6 \partial x_1}=\frac{(-(\alpha +\mu)c_f\beta_m)}{(\pi-1)\varLambda} ,\\ \noalign{\vspace*{2pt}} \frac{\partial f^2_2}{\partial x_1\partial x_7}=\frac{\partial f^2_2}{\partial x_7 \partial x_1}=\frac{\vartheta(\alpha+\mu) c_f\beta_m\rho_{fm_2}}{(1- \pi)\varLambda},\\ \noalign{\vspace*{2pt}} \frac{\partial f^2_2}{\partial x_4\partial x_6}=\frac{\partial f^2_2}{\partial x_6\partial x_4}=\frac{\partial f^2_2}{\partial x_5\partial x_6}= \frac{\partial f^2_2}{\partial x_6\partial x_5} =\frac{-\pi(\alpha+\mu) c_f\beta_m\rho_{fm_1}}{(\pi-1)^2\varLambda},\\ \noalign{\vspace*{2pt}} \frac{\partial f^2_2}{\partial x_4\partial x_7}=\frac{\partial f^2_2}{\partial x_7\partial x_4}=\frac{\partial f^2_2}{\partial x_5\partial x_7}= \frac{\partial f^2_2}{\partial x_7\partial x_5}=\frac{-\pi\vartheta(\alpha +\mu) c_f\beta_m\rho_{fm_1}}{(\pi-1)^2\varLambda},\\ \noalign{\vspace*{2pt}} \frac{\partial f^2_2}{\partial x_6\partial x_6}=\frac{-2\pi(\alpha+\mu) c_f\beta_m\rho_{fm_1}}{(\pi-1)^2\varLambda},\\ \noalign{\vspace*{2pt}} \frac{\partial f^2_2}{\partial x_6\partial x_7}=\frac{\partial f^2_2}{\partial x_7\partial x_7}=\frac{-\pi(\alpha+\mu)c_f\beta_m(\rho_{fm_1}+\vartheta \rho_{fm_1})}{(\pi-1)^2\varLambda},\\ \noalign{\vspace*{2pt}} \frac{\partial f^2_2}{\partial x_7\partial x_7}=\frac{-2\pi\vartheta(\alpha+\mu)c_f\beta_m\rho_{fm_1}}{(-1+\pi)^2\varLambda},\\ \noalign{\vspace*{2pt}} \frac{\partial f^2_6}{\partial x_1\partial x_2}= \frac{\partial f^2_6}{\partial x_2\partial x_1}=\frac{(\pi-1)(\alpha+\mu)^2 c_m\beta_f}{\pi^2\varLambda(\alpha +\delta+\mu)},\\ \noalign{\vspace*{2pt}} \frac{\partial f^2_6}{\partial x_2\partial x_2}=\frac{2(\pi-1)(\alpha+\mu)^2 c_m\beta_f}{\pi^2\varLambda(\alpha +\delta+\mu)},\\ \noalign{\vspace*{2pt}} \frac{\partial f^2_6}{\partial x_2\partial x_4}=\frac{\partial f^2_6}{\partial x_4\partial x_2}=\frac{(\alpha+\mu)c_m\beta_f}{\pi\varLambda},\\ \noalign{\vspace*{2pt}} \frac{\partial f^2_7}{\partial x_1\partial x_2}=\frac{\partial f^2_7}{\partial x_2\partial x_1}=\frac{(\pi-1)\delta(\alpha+\mu)c_m\beta_f}{\pi^2\varLambda(\alpha+\delta+\mu)},\\ \noalign{\vspace*{2pt}} \frac{\partial f^2_7}{\partial x_2\partial x_2}=\frac{(\pi-1)\delta (\alpha+\mu)c_m\beta_f}{\pi^2\varLambda(\alpha+\delta+\mu)} \quad \mbox{and}\quad \frac{\partial f^2_7}{\partial x_2\partial x_5}=\frac{\partial f^2_7}{\partial x_5\partial x_2}=\frac{(\alpha+\mu) c_m\beta_f}{\pi\varLambda}. \end{array} \right . $$
(22)

The bifurcation coefficient a is calculated as follows:

(23)

where

$$ \left \{ \begin{array}{l} B_1= - \frac{2c_f c^2_mu^2_2v_2\beta^2_f\beta_m((\alpha+\mu)\rho^2_{fm_1} + \delta\vartheta^2\rho^2_{fm_2})(\alpha+\mu)\rho_{fm_1}}{\pi\varLambda(\alpha+\gamma+\mu)^2(\alpha+\delta+\mu)^2}\\ \noalign{\vspace*{2pt}} \qquad {}\times {(\gamma-c_f\beta_m\rho_{fm_1}+\gamma\delta\rho_{fm_2}-\delta\vartheta^2 c_f\beta_m\rho^2_{fm_2})} ,\\ \noalign{\vspace*{2pt}} B_2=- \frac{2(\alpha+\mu)c_fc_mu^2_{v_2}\beta_f\beta_m\rho^2_{fm_1}}{\pi\varLambda(\alpha+\gamma+\mu)^2(\alpha+\delta+\mu)^2}\\ \noalign{\vspace*{2pt}} \qquad {}\times ((\alpha+\mu) (\alpha+\gamma+\mu)(\alpha+\delta+\mu)+c_m\beta_f ((\alpha+\mu)\rho_{fm_1}\\ \qquad {}\times (\alpha+\gamma+\mu-c_f\beta_m\rho_{fm_1})-\delta\vartheta^2 c_f\beta_m\rho^2_{fm_2})) \\ \noalign{\vspace*{2pt}} B_3= - \frac{2(1-\pi)\delta\vartheta(\alpha+\mu)c_fc_mu^2_2v_2\beta_f\beta_m\rho^2_{fm_2}}{(1-\pi)\pi\varLambda(\alpha+\gamma+\mu)(\alpha+\delta+\mu)^2}\\ \noalign{\vspace*{2pt}} \qquad {}\times [(\alpha+ \delta+\mu)+ c_m\beta_f(\rho_{fm_1}+(\alpha+\delta+\mu)\rho_{fm_2})\\ \qquad {}-\frac{c_fc_m\beta_f\beta_m(\rho^2_{fm_1}+\delta\vartheta^2\rho^2_{fm_2})}{(\alpha+\gamma+\mu)} ] . \end{array} \right . $$
(24)

 □

Appendix B

(25)

where \(C_{1}=\vartheta\rho_{fm_{2}}((\alpha+\mu)(\alpha+\gamma+\mu)\rho_{fm_{1}}+(\alpha+\gamma+\delta+\mu)^{2}\rho_{fm_{2}})\) and \(C_{2}=\rho_{fm_{1}}((\alpha+\gamma+\mu)(2\alpha+\gamma+2\delta+\mu)\rho_{fm_{1}}+\delta^{2}\vartheta\rho_{fm_{2}})\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malunguza, N.J., Hove-Musekwa, S.D., Musuka, G. et al. Investigating Alcohol Consumption as a Risk Factor for HIV Transmission in Heterosexual Settings in Sub-Saharan African Communities. Bull Math Biol 74, 2094–2124 (2012). https://doi.org/10.1007/s11538-012-9747-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-012-9747-8

Keywords

Navigation