Skip to main content

Advertisement

Log in

Linearized Forms of Individual-Level Models for Large-Scale Spatial Infectious Disease Systems

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Individual-level models (ILMs) for infectious diseases, fitted in a Bayesian MCMC framework, are an intuitive and flexible class of models that can take into account population heterogeneity via various individual-level covariates. ILMs containing a geometric distance kernel to account for geographic heterogeneity provide a natural way to model the spatial spread of many diseases. However, in even only moderately large populations, the likelihood calculations required can be prohibitively time consuming. It is possible to speed up the computation via a technique which makes use a linearized distance kernel. Here we examine some methods of carrying out this linearization and compare the performances of these methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anderson, R., & May, R. (1991). Infectious diseases of humans. Oxford: Oxford University Press.

    Google Scholar 

  • Bhadra, A., Ionides, E. L., Laneri, K., Pascual, M., Bouma, M., & Dhiman, R. C. (2011). Malaria in Northwest India: Data analysis via partially observed stochastic differential equation models driven by Levy noise. Journal of the American Statistical Association, 106, 440–451.

    Article  MathSciNet  MATH  Google Scholar 

  • Brooks, S., Gelman, A., Jones, G. & Meng, X. L. (Eds.) (2011). Handbook of Markov chain Monte Carlo. London: Chapman & Hall.

    MATH  Google Scholar 

  • Cauchemez, S., Bhattarai, A., Marchbanks, T. L., Fagan, R. P., Ostroff, S., Ferguson, N. M., Swerdlow, D., & the Pennsylvania H1N1 working group (2011). Role of social networks in shaping disease transmission during a community outbreak of 2009 H1N1 pandemic influenza. Proceedings of the National Academy of Sciences of the United States of America, 108(7), 2825–2830.

    Article  Google Scholar 

  • Chis-Ster, I., & Ferguson, N. M. (2007). Transmission parameters of the 2001 foot and mouth epidemic in Great Britain. PLoS ONE, 2(6).

  • Chis-Ster, I., & Ferguson, N. M. (2009). Epidemiological inference for partially observed epidemics: The example of the 2001 foot and mouth epidemic in Great Britain. Epidemics, 1, 21–34.

    Article  Google Scholar 

  • Cook, A. R., Marion, G., Butler, A., & Gibson, G. J. (2007a). Bayesian inference for the spatio-temporal invasion of alien species. Bulletin of Mathematical Biology, 69, 2005–2025.

    Article  MathSciNet  MATH  Google Scholar 

  • Cook, A. R., Otten, W., Marion, G., Gibson, G. J., & Gilligan, C. A. (2007b). Estimation of multiple transmission rates for epidemics in heterogeneous populations. Proceedings of the National Academy of Sciences of the United States of America, 104(51), 20392–20397.

    Article  Google Scholar 

  • Daley, D. J., & Gani, J. (1999). Epidemic models: an introduction. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Deardon, R., Brooks, S. P., Grenfell, B. T., Keeling, M. J., Tildesley, M. J., Savill, N. J., Shaw, D. J., & Woolhouse, M. E. J. (2010). Inference for individual-level models of infectious diseases in large populations. Statistica Sinica, 20, 239–261.

    MathSciNet  MATH  Google Scholar 

  • Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2003). Bayesian data analysis. London: Chapman & Hall.

    Google Scholar 

  • Gelman, A., Meng, X. -L., & Stern, H. (1996). Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica, 6, 733–807.

    MathSciNet  MATH  Google Scholar 

  • Habibzadeh, B., & Deardon, R. (2010). The misspecification of infectious and latent periods in space-time epidemic models. Statistical Communications in Infectious Diseases, 1(2), Article 24.

    MathSciNet  Google Scholar 

  • Jewell, C. P., Kypraios, T., Neal, P., & Roberts, G. O. (2009). Bayesian analysis of emerging infectious diseases. Bayesian Analysis, 4(2), 191–222.

    MathSciNet  Google Scholar 

  • Keeling, M. J., Woolhouse, M. E. J., Shaw, D. J., Matthews, L., Chase-Topping, M., Haydon, D., Cornell, S. J., Kappey, J., Wilesmith, J., & Grenfell, B. (2001). Dynamics of UK foot-and-mouth epidemic: stochastic dispersal in a heterogeneous landscape. Science, 294, 813–817.

    Article  Google Scholar 

  • McBryde, E., Gibson, G., Pettitt, A., Zhang, Y., Zhao, B., & McElwain, D. (2006). Bayesian modeling of an epidemic of severe acute respiratory syndrome. Bulletin of Mathematical Biology, 68, 889–917.

    Article  MathSciNet  Google Scholar 

  • McKinley, T. J., Cook, A., & Deardon, R. (2009). Inference for epidemic models without likelihoods. International Journal of Biostatistics, 5(1), Article 24.

    MathSciNet  Google Scholar 

  • Müller, P., & Quintana, F. A. (2004). Nonparametric Bayesian data analysis. Statistical Science, 19, 95–110.

    Article  MathSciNet  MATH  Google Scholar 

  • O’Neill, P. D. (2010). Introduction and snapshot review: relating infectious disease transmission models to data. Statistics in Medicine, 29(20), 2069–2077.

    Article  MathSciNet  Google Scholar 

  • Tildesley, M. J., Savill, N. J., Shaw, D. J., Deardon, R., Brooks, S. P., Woolhouse, M. E. J., Grenfell, B. T., & Keeling, M. J. (2006). Optimal reactive vaccination strategies for an outbreak of foot-and-mouth disease in Great Britain. Nature, 440, 83–86.

    Article  Google Scholar 

  • Toni, T., Welch, D., Strelkowa, N., Ipsen, A., & Strumpf, M. P. (2009). Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. Journal of the Royal Society Interface, 6, 187–202.

    Article  Google Scholar 

  • Vrbik, I., Deardon, R., Feng, Z., Gardner, A., & Braun, W. J. (2012). Modeling the spatio-temporal dynamics of combustion. To appear in Bayesian Analysis (available online March 2012).

  • Zelner, J. L., King, A. A., Moe, C. L., & Eisenberg, J. N. S. (2010). How infections propagate after point-source outbreaks: an analysis of secondary norovirus transmission. Epidemiology, 21, 711–718.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA)/University of Guelph partnership and the Natural Sciences and Engineering Research Council (NSERC) of Canada Discovery Grants Program. This work was also made possible through the use of computing facilities funded in part by the Canada Foundation for Innovation (CFI) and NSERC. We would also like to thank the reviewers of the paper whose revisions on an earlier draft have helped substantially improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grace P. S. Kwong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwong, G.P.S., Deardon, R. Linearized Forms of Individual-Level Models for Large-Scale Spatial Infectious Disease Systems. Bull Math Biol 74, 1912–1937 (2012). https://doi.org/10.1007/s11538-012-9739-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-012-9739-8

Keywords

Navigation