# Insights into Cell Membrane Microdomain Organization from Live Cell Single Particle Tracking of the IgE High Affinity Receptor Fc*ϵ*RI of Mast Cells

- 538 Downloads
- 4 Citations

## Abstract

Current models propose that the plasma membrane of animal cells is composed of heterogeneous and dynamic microdomains known variously as cytoskeletal corrals, lipid rafts and protein islands. Much of the experimental evidence for these membrane compartments is indirect. Recently, live cell single particle tracking studies using quantum dot-labeled IgE bound to its high affinity receptor Fc*ϵ*RI, provided direct evidence for the confinement of receptors within micrometer-scale cytoskeletal corrals.

In this study, we show that an innovative time-series analysis of single particle tracking data for the high affinity IgE receptor, Fc*ϵ*RI, on mast cells provides substantial quantitative information about the submicrometer organization of the membrane. The analysis focuses on the probability distribution function of the lengths of the jumps in the positions of the quantum dots labeling individual IgE Fc*ϵ*RI complexes between frames in movies of their motion. Our results demonstrate the presence, within the micrometer-scale cytoskeletal corrals, of smaller subdomains that provide an additional level of receptor confinement. There is no characteristic size for these subdomains; their size varies smoothly from a few tens of nanometers to a over a hundred nanometers.

In QD-IGE labeled unstimulated cells, jumps of less than 70 nm predominate over longer jumps. Addition of multivalent antigen to crosslink the QD-IgE-Fc*ϵ*RI complexes causes a rapid slowing of receptor motion followed by a long tail of mostly jumps less than 70 nm. The reduced receptor mobility likely reflects both the membrane heterogeneity revealed by the confined motion of the monomeric receptor complexes and the antigen-induced cross linking of these complexes into dimers and higher oligomers. In both cases, the probability distribution of the jump lengths is well fit, from 10 nm to over 100 nm, by a novel power law. The fit for short jumps suggests that the motion of the quantum dots can be modeled as diffusion in a fractal space of dimension less than two.

## Keywords

Live cell IgE-Fc*ϵ*RI Microdomains Cytoskeletal corrals Single particle tracking Quantum dots Time series Jump sizes Standard deviation of jumps Time-dependent diffusion coefficient

## Notes

### Acknowledgements

This work was supported in part by NIH grant P50 GM085273, supporting the Center for Spatiotemporal Modeling of Cell Signaling, and by NIH grants R01 GM49814 and R01 AI051575.

## References

- Adamic, L. (2011). Complex systems: unzipping Zipf’s law.
*Nature*,*474*(7350), 164–165. CrossRefGoogle Scholar - Andrews, N. L. (2011).
*The role of diffusion and membrane topography in the initiation of high affinity IgE receptor signaling*. PhD thesis, University of New Mexico, Albuquerque, New Mexico, USA. Google Scholar - Andrews, N. L., Lidke, K. A., Pfeiffer, J. R., Burns, A. R., Wilson, B. S., & Oliver, J. M. (2008). Actin restricts Fc
*ϵ*RI diffusion and facilitates antigen induced receptor immobilization.*Nat. Cell Biol.*,*10*(8), 955–962. CrossRefGoogle Scholar - Andrews, N. L., Pfeiffer, J. R., Martinez, A. M., Haaland, D. M., Davis, R. W., Kawakami, T., Oliver, J. M., Wilson, B. S., & Lidke, D. S. (2009). Small, mobile Fc
*ϵ*RI aggregates are signaling competent.*Immunity*,*31*(3), 469–479. doi: 10.1016/j.immuni.2009.06.026. CrossRefGoogle Scholar - Bachir, A. L. (2006). Characterization of blinking dynamics in quantum dots ensembles using image correlation spectroscopy.
*J. Appl. Phys., 99*(6). doi: 10.1063/1.2175470. - Barroso, M. M. (2011). Quantum dots in cell biology.
*J. Histochem. Cytochem.*,*59*(3), 237–251. MathSciNetCrossRefGoogle Scholar - Baumann, G., Place, R. F., & Foldes-Papp, Z. (2010). Meaningful interpretation of subdiffusive measurements in living cells (crowded environment) by fluorescence fluctuation microscopy.
*Curr. Pharm. Biotechnol.*,*11*, 527–543. CrossRefGoogle Scholar - Cebecauer, M., Spitaler, M., Sergé, A., & Magee, A. I. (2010). Signalling complexes and clusters: functional advantages and methodological hurdles.
*J. Cell Sci.*,*123*(3), 309–320. CrossRefGoogle Scholar - Destainville, N., & Salome, L. (2006). Quantification and correction of systematic errors due to detector time-averaging in single-molecule tracking experiments.
*Biophys. J.*,*90*(2), L17–L19. CrossRefGoogle Scholar - Espinoza, F., Oliver, J., Wilson, B., & Steinberg, S. (2012). Using hierarchical clustering and dendrograms to quantify the clustering of membrane proteins.
*Bull. Math. Biol.*,*74*, 190–211. doi: 10.1007/s11538-011-9671-3. MathSciNetCrossRefzbMATHGoogle Scholar - Jaqaman, K., Loerke, D., Mettlen, M., Kuwata, H., Grinstein, S., Schmid, S. L., & Danuser, G. (2008). Robust single-particle tracking in live-cell time-lapse sequences.
*Nat. Methods*,*5*(8), 695–702. CrossRefGoogle Scholar - Nicolau, D. V. Jr., Hancock, J. F., & Burrage, K. (2007). Sources of anomalous diffusion on cell membranes: a Monte Carlo study.
*Biophys. J.*,*92*, 1975–1987. CrossRefGoogle Scholar - Kalay, Z., Parris, P. E., & Kenkre, V. M. (2008). Effects of disorder in location and size of fence barriers on molecular motion in cell membranes.
*J. Phys. Condens. Matter*,*20*(24), 245105 (8 pp.). CrossRefGoogle Scholar - Kenkre, V. M., Giuggioli, L., & Kalay, Z. (2008). Molecular motion in cell membranes: analytic study of fence-hindered random walks.
*Phys. Rev. E*,*77*, 1–10. CrossRefGoogle Scholar - Kraft, S., & Kinet, J.-P. (2007). New developments in Fc
*ϵ*RI regulation, function and inhibition.*Nat. Rev. Immunol.*,*7*, 365–378. CrossRefGoogle Scholar - Kubitscheck, U. (2009).
*Single molecule fluorescence monitoring in eukaryotic cells: intranuclear dynamics of splicing factors*(pp. 1–17). Wiley-VCH Verlag GmbH & Co. KGaA. Google Scholar - Kusumi, A., Nakada, C., Ritchie, K., Murase, K., Suzuki, K., Murakoshi, H., Kasai, R. S., Kondo, J., & Fujiwara, T. (2005). Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules.
*Annu. Rev. Biophys. Biomol. Struct.*,*34*(1), 351–378. CrossRefGoogle Scholar - Lidke, D. S., Andrews, N. L., Pfeiffer, J. R., Jones, H. D. T., Sinclair, M. B., Haaland, D. M., Burns, A. R., Wilson, B. S., Oliver, J. M., & Lidke, K. A. (2007). Exploring membrane protein dynamics by multicolor single quantum dot imaging using wide field, TIRF, and hyperspectral microscopy.
*Proc. SPIE*,*6448*, 6448. Google Scholar - Lidke, D. S., & Wilson, B. S. (2009). Caught in the act: quantifying protein bahaviour in living cells.
*Trends Cell Biol.*,*19*, 566–574. CrossRefGoogle Scholar - Lidke, D. S., & Arndt-Jovin, D. J. (2004). Imaging takes a quantum leap.
*Physiology*,*19*(6), 322–325. CrossRefGoogle Scholar - Lidke, D. S., Lidke, K. A., Rieger, B., Jovin, T. M., & Arndt-Jovin, D. J. (2005). Reaching out for signals: filopodia sense EGF and respond by directed retrograde transport of activated receptors.
*J. Cell Biol.*,*170*(4), 619–626. CrossRefGoogle Scholar - Lidke, D. S., Low-Nam, S. T., Cutler, P. J., & Lidke, K. A. (2011). Determining Fc
*ϵ*RI diffusional dynamics via single quantum dot tracking. In J. P. Rast & J. W. D. Booth (Eds.),*Methods in molecular biology: Vol.**748*.*Immune receptors*(pp. 121–132). Clifton: Humana Press. CrossRefGoogle Scholar - Lidke, D. S., Nagy, P., Heintzmann, R., Arndt-Jovin, D. J., Post, J. N., Grecco, H., Jares-Erijman, E. A., & Jovin, T. M. (2004). Quantum dot ligands provide new insights into receptor-mediated signal transduction.
*Nat. Biotechnol.*,*22*, 198–203. CrossRefGoogle Scholar - Lillemeier, B. F., Pfeiffer, J. R., Surviladze, Z., Wilson, B. S., & Davis, M. M. (2006). Plasma membrane-associated proteins are clustered into “islands” attached to the cytoskeleton.
*Proc. Natl. Acad. Sci. USA*,*103*(50), 18993. CrossRefGoogle Scholar - Lippincott-Schwartz, J., Snapp, E., & Kenworthy, A. (2001). Studying protein dynamics in living cells.
*Nat. Rev. Mol. Cell Biol.*,*2*(6), 444–456. CrossRefGoogle Scholar - Manley, S., Gillette, J. M., Patterson, G. H., Shroff, H., Hess, H. F., Betzig, E., & Lippincott-Schwartz, J. (2008). High-density mapping of single-molecule trajectories with photoactivated localization microscopy.
*Nat. Methods*,*5*(2), 155–157. CrossRefGoogle Scholar - Metzler, R., & Klafter, J. (2000). The random walk’s guide to anomalous diffusion: a fractional dynamics approach.
*Phys. Rep.*,*339*(1), 1–77. MathSciNetCrossRefzbMATHGoogle Scholar - Novak, I. L., Kraikivski, P., & Slepchenko, B. M. (2009). Diffusion in cytoplasm: effects of excluded volume due to internal membranes and cytoskeletal structures.
*Biophys. J.*,*97*(3), 758–767. CrossRefGoogle Scholar - Pike, L. J. (2006). A report on the keystone symposium on lipid rafts and cell function.
*PubMed*,*47*(7), 1597–1598. Google Scholar - Pinaud, F., Clarke, S., Sittner, A., & Dahan, M. (2010). Probing cellular events, one quantum dot at a time.
*Nat. Methods*,*7*(4), 275–285. CrossRefGoogle Scholar - Pons, T., & Mattoussi, H. (2009). Investigating biological processes at the single molecule level using luminescent quantum dots.
*Ann. Biomed. Eng.*,*37*, 1934–1959. doi: 10.1007/s10439-009-9715-0. CrossRefGoogle Scholar - Savin, T., & Doyle, P. S. (2007). Statistical and sampling issues when using multiple particle tracking.
*Phys. Rev. E*,*76*, 021501. CrossRefGoogle Scholar - Saxton, M. J. (1997). Single-particle tracking: the distribution of diffusion coefficients.
*Biophys. J.*,*72*(4), 1744–1753. CrossRefGoogle Scholar - Saxton, M. J. (2008). Single-particle tracking: connecting the dots.
*Nat. Methods*,*5*(8), 671–672. CrossRefGoogle Scholar - Saxton, M. J. (2009). Single particle tracking. In T. Jue (Ed.),
*Handbook of modern biophysics. Fundamental concepts in biophysics*(pp. 1–33). Clifton: Humana Press. doi: 10.1007/978-1-59745-397-4_6. CrossRefGoogle Scholar - Saxton, M. J., & Jacobson, K. (1997). Single particle tracking: applications to membrane dynamics.
*Annu. Rev. Biophys. Biomol. Struct.*,*26*(1), 373–399. CrossRefGoogle Scholar - Seagrave, J. C., Pfeiffer, J. R., Wofsy, C., & Oliver, J. M. (1991). The relationship of IgE receptor topography to secretion in RBL-2H3 mast cells.
*J. Cell Physiol.*,*148*(1), 139–151. CrossRefGoogle Scholar - Serge, A., Bertaux, N., Rigneault, H., & Marguet, D. (2008). Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes.
*Nat. Methods*,*5*(8), 687–694. CrossRefGoogle Scholar - Shumway, R. H., & Stoffer, D. S. (2006).
*Time series analysis and its applications with R examples*. New York: Springer. zbMATHGoogle Scholar - Smith, C. S., Joseph, N., Rieger, B., & Lidke, K. A. (2010). Fast, single-molecule localization that achieves theoretically minimum uncertainty.
*Nat. Methods*,*7*, 373–375. CrossRefGoogle Scholar - Weigel, A. V., Simon, B., Tamkun, M. M., & Krapf, D. (2011). Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking.
*Proc. Natl. Acad. Sci. USA*,*108*(16), 6438–6443. CrossRefGoogle Scholar - Wells, N. P., Lessard, G. A., Goodwin, P. M., Phipps, M. E., Cutler, P. J., Lidke, D. S., Wilson, B. S., & Werner, J. H. (2010). Time-resolved three-dimensional molecular tracking in live cells.
*Nano Lett.*,*10*(11), 4732–4737. CrossRefGoogle Scholar - Wilson, B. S., Pfeiffer, J. R., & Oliver, J. M. (2002). Fc
*ϵ*RI signaling observed from the inside of the mast cell membrane.*Mol. Immunol.*,*1144*, 1–10. Google Scholar - Ying, W., Huerta, G., Zúñiga, M., & Steinberg, S. (2009). Time series analysis of particle tracking data for molecular motion on the cell membrane.
*Bull. Math. Biol.*,*71*(8), 1967–2024. MathSciNetCrossRefzbMATHGoogle Scholar - Zaslavsky, G. M. (2002). Chaos, fractional kinetics, and anomalous transport.
*Phys. Rep.*,*371*, 461–580. MathSciNetCrossRefzbMATHGoogle Scholar