Bulletin of Mathematical Biology

, Volume 74, Issue 8, pp 1857–1911 | Cite as

Insights into Cell Membrane Microdomain Organization from Live Cell Single Particle Tracking of the IgE High Affinity Receptor FcϵRI of Mast Cells

  • Flor A. Espinoza
  • Michael J. Wester
  • Janet M. Oliver
  • Bridget S. Wilson
  • Nicholas L. Andrews
  • Diane S. Lidke
  • Stanly L. Steinberg
Original Article

Abstract

Current models propose that the plasma membrane of animal cells is composed of heterogeneous and dynamic microdomains known variously as cytoskeletal corrals, lipid rafts and protein islands. Much of the experimental evidence for these membrane compartments is indirect. Recently, live cell single particle tracking studies using quantum dot-labeled IgE bound to its high affinity receptor FcϵRI, provided direct evidence for the confinement of receptors within micrometer-scale cytoskeletal corrals.

In this study, we show that an innovative time-series analysis of single particle tracking data for the high affinity IgE receptor, FcϵRI, on mast cells provides substantial quantitative information about the submicrometer organization of the membrane. The analysis focuses on the probability distribution function of the lengths of the jumps in the positions of the quantum dots labeling individual IgE FcϵRI complexes between frames in movies of their motion. Our results demonstrate the presence, within the micrometer-scale cytoskeletal corrals, of smaller subdomains that provide an additional level of receptor confinement. There is no characteristic size for these subdomains; their size varies smoothly from a few tens of nanometers to a over a hundred nanometers.

In QD-IGE labeled unstimulated cells, jumps of less than 70 nm predominate over longer jumps. Addition of multivalent antigen to crosslink the QD-IgE-FcϵRI complexes causes a rapid slowing of receptor motion followed by a long tail of mostly jumps less than 70 nm. The reduced receptor mobility likely reflects both the membrane heterogeneity revealed by the confined motion of the monomeric receptor complexes and the antigen-induced cross linking of these complexes into dimers and higher oligomers. In both cases, the probability distribution of the jump lengths is well fit, from 10 nm to over 100 nm, by a novel power law. The fit for short jumps suggests that the motion of the quantum dots can be modeled as diffusion in a fractal space of dimension less than two.

Keywords

Live cell IgE-FcϵRI Microdomains Cytoskeletal corrals Single particle tracking Quantum dots Time series Jump sizes Standard deviation of jumps Time-dependent diffusion coefficient 

References

  1. Adamic, L. (2011). Complex systems: unzipping Zipf’s law. Nature, 474(7350), 164–165. CrossRefGoogle Scholar
  2. Andrews, N. L. (2011). The role of diffusion and membrane topography in the initiation of high affinity IgE receptor signaling. PhD thesis, University of New Mexico, Albuquerque, New Mexico, USA. Google Scholar
  3. Andrews, N. L., Lidke, K. A., Pfeiffer, J. R., Burns, A. R., Wilson, B. S., & Oliver, J. M. (2008). Actin restricts FcϵRI diffusion and facilitates antigen induced receptor immobilization. Nat. Cell Biol., 10(8), 955–962. CrossRefGoogle Scholar
  4. Andrews, N. L., Pfeiffer, J. R., Martinez, A. M., Haaland, D. M., Davis, R. W., Kawakami, T., Oliver, J. M., Wilson, B. S., & Lidke, D. S. (2009). Small, mobile FcϵRI aggregates are signaling competent. Immunity, 31(3), 469–479. doi:10.1016/j.immuni.2009.06.026. CrossRefGoogle Scholar
  5. Bachir, A. L. (2006). Characterization of blinking dynamics in quantum dots ensembles using image correlation spectroscopy. J. Appl. Phys., 99(6). doi:10.1063/1.2175470.
  6. Barroso, M. M. (2011). Quantum dots in cell biology. J. Histochem. Cytochem., 59(3), 237–251. MathSciNetCrossRefGoogle Scholar
  7. Baumann, G., Place, R. F., & Foldes-Papp, Z. (2010). Meaningful interpretation of subdiffusive measurements in living cells (crowded environment) by fluorescence fluctuation microscopy. Curr. Pharm. Biotechnol., 11, 527–543. CrossRefGoogle Scholar
  8. Cebecauer, M., Spitaler, M., Sergé, A., & Magee, A. I. (2010). Signalling complexes and clusters: functional advantages and methodological hurdles. J. Cell Sci., 123(3), 309–320. CrossRefGoogle Scholar
  9. Destainville, N., & Salome, L. (2006). Quantification and correction of systematic errors due to detector time-averaging in single-molecule tracking experiments. Biophys. J., 90(2), L17–L19. CrossRefGoogle Scholar
  10. Espinoza, F., Oliver, J., Wilson, B., & Steinberg, S. (2012). Using hierarchical clustering and dendrograms to quantify the clustering of membrane proteins. Bull. Math. Biol., 74, 190–211. doi:10.1007/s11538-011-9671-3. MathSciNetCrossRefMATHGoogle Scholar
  11. Jaqaman, K., Loerke, D., Mettlen, M., Kuwata, H., Grinstein, S., Schmid, S. L., & Danuser, G. (2008). Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods, 5(8), 695–702. CrossRefGoogle Scholar
  12. Nicolau, D. V. Jr., Hancock, J. F., & Burrage, K. (2007). Sources of anomalous diffusion on cell membranes: a Monte Carlo study. Biophys. J., 92, 1975–1987. CrossRefGoogle Scholar
  13. Kalay, Z., Parris, P. E., & Kenkre, V. M. (2008). Effects of disorder in location and size of fence barriers on molecular motion in cell membranes. J. Phys. Condens. Matter, 20(24), 245105 (8 pp.). CrossRefGoogle Scholar
  14. Kenkre, V. M., Giuggioli, L., & Kalay, Z. (2008). Molecular motion in cell membranes: analytic study of fence-hindered random walks. Phys. Rev. E, 77, 1–10. CrossRefGoogle Scholar
  15. Kraft, S., & Kinet, J.-P. (2007). New developments in FcϵRI regulation, function and inhibition. Nat. Rev. Immunol., 7, 365–378. CrossRefGoogle Scholar
  16. Kubitscheck, U. (2009). Single molecule fluorescence monitoring in eukaryotic cells: intranuclear dynamics of splicing factors (pp. 1–17). Wiley-VCH Verlag GmbH & Co. KGaA. Google Scholar
  17. Kusumi, A., Nakada, C., Ritchie, K., Murase, K., Suzuki, K., Murakoshi, H., Kasai, R. S., Kondo, J., & Fujiwara, T. (2005). Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu. Rev. Biophys. Biomol. Struct., 34(1), 351–378. CrossRefGoogle Scholar
  18. Lidke, D. S., Andrews, N. L., Pfeiffer, J. R., Jones, H. D. T., Sinclair, M. B., Haaland, D. M., Burns, A. R., Wilson, B. S., Oliver, J. M., & Lidke, K. A. (2007). Exploring membrane protein dynamics by multicolor single quantum dot imaging using wide field, TIRF, and hyperspectral microscopy. Proc. SPIE, 6448, 6448. Google Scholar
  19. Lidke, D. S., & Wilson, B. S. (2009). Caught in the act: quantifying protein bahaviour in living cells. Trends Cell Biol., 19, 566–574. CrossRefGoogle Scholar
  20. Lidke, D. S., & Arndt-Jovin, D. J. (2004). Imaging takes a quantum leap. Physiology, 19(6), 322–325. CrossRefGoogle Scholar
  21. Lidke, D. S., Lidke, K. A., Rieger, B., Jovin, T. M., & Arndt-Jovin, D. J. (2005). Reaching out for signals: filopodia sense EGF and respond by directed retrograde transport of activated receptors. J. Cell Biol., 170(4), 619–626. CrossRefGoogle Scholar
  22. Lidke, D. S., Low-Nam, S. T., Cutler, P. J., & Lidke, K. A. (2011). Determining FcϵRI diffusional dynamics via single quantum dot tracking. In J. P. Rast & J. W. D. Booth (Eds.), Methods in molecular biology: Vol. 748. Immune receptors (pp. 121–132). Clifton: Humana Press. CrossRefGoogle Scholar
  23. Lidke, D. S., Nagy, P., Heintzmann, R., Arndt-Jovin, D. J., Post, J. N., Grecco, H., Jares-Erijman, E. A., & Jovin, T. M. (2004). Quantum dot ligands provide new insights into receptor-mediated signal transduction. Nat. Biotechnol., 22, 198–203. CrossRefGoogle Scholar
  24. Lillemeier, B. F., Pfeiffer, J. R., Surviladze, Z., Wilson, B. S., & Davis, M. M. (2006). Plasma membrane-associated proteins are clustered into “islands” attached to the cytoskeleton. Proc. Natl. Acad. Sci. USA, 103(50), 18993. CrossRefGoogle Scholar
  25. Lippincott-Schwartz, J., Snapp, E., & Kenworthy, A. (2001). Studying protein dynamics in living cells. Nat. Rev. Mol. Cell Biol., 2(6), 444–456. CrossRefGoogle Scholar
  26. Manley, S., Gillette, J. M., Patterson, G. H., Shroff, H., Hess, H. F., Betzig, E., & Lippincott-Schwartz, J. (2008). High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods, 5(2), 155–157. CrossRefGoogle Scholar
  27. Metzler, R., & Klafter, J. (2000). The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep., 339(1), 1–77. MathSciNetCrossRefMATHGoogle Scholar
  28. Novak, I. L., Kraikivski, P., & Slepchenko, B. M. (2009). Diffusion in cytoplasm: effects of excluded volume due to internal membranes and cytoskeletal structures. Biophys. J., 97(3), 758–767. CrossRefGoogle Scholar
  29. Pike, L. J. (2006). A report on the keystone symposium on lipid rafts and cell function. PubMed, 47(7), 1597–1598. Google Scholar
  30. Pinaud, F., Clarke, S., Sittner, A., & Dahan, M. (2010). Probing cellular events, one quantum dot at a time. Nat. Methods, 7(4), 275–285. CrossRefGoogle Scholar
  31. Pons, T., & Mattoussi, H. (2009). Investigating biological processes at the single molecule level using luminescent quantum dots. Ann. Biomed. Eng., 37, 1934–1959. doi:10.1007/s10439-009-9715-0. CrossRefGoogle Scholar
  32. Savin, T., & Doyle, P. S. (2007). Statistical and sampling issues when using multiple particle tracking. Phys. Rev. E, 76, 021501. CrossRefGoogle Scholar
  33. Saxton, M. J. (1997). Single-particle tracking: the distribution of diffusion coefficients. Biophys. J., 72(4), 1744–1753. CrossRefGoogle Scholar
  34. Saxton, M. J. (2008). Single-particle tracking: connecting the dots. Nat. Methods, 5(8), 671–672. CrossRefGoogle Scholar
  35. Saxton, M. J. (2009). Single particle tracking. In T. Jue (Ed.), Handbook of modern biophysics. Fundamental concepts in biophysics (pp. 1–33). Clifton: Humana Press. doi:10.1007/978-1-59745-397-4_6. CrossRefGoogle Scholar
  36. Saxton, M. J., & Jacobson, K. (1997). Single particle tracking: applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct., 26(1), 373–399. CrossRefGoogle Scholar
  37. Seagrave, J. C., Pfeiffer, J. R., Wofsy, C., & Oliver, J. M. (1991). The relationship of IgE receptor topography to secretion in RBL-2H3 mast cells. J. Cell Physiol., 148(1), 139–151. CrossRefGoogle Scholar
  38. Serge, A., Bertaux, N., Rigneault, H., & Marguet, D. (2008). Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes. Nat. Methods, 5(8), 687–694. CrossRefGoogle Scholar
  39. Shumway, R. H., & Stoffer, D. S. (2006). Time series analysis and its applications with R examples. New York: Springer. MATHGoogle Scholar
  40. Smith, C. S., Joseph, N., Rieger, B., & Lidke, K. A. (2010). Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat. Methods, 7, 373–375. CrossRefGoogle Scholar
  41. Weigel, A. V., Simon, B., Tamkun, M. M., & Krapf, D. (2011). Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking. Proc. Natl. Acad. Sci. USA, 108(16), 6438–6443. CrossRefGoogle Scholar
  42. Wells, N. P., Lessard, G. A., Goodwin, P. M., Phipps, M. E., Cutler, P. J., Lidke, D. S., Wilson, B. S., & Werner, J. H. (2010). Time-resolved three-dimensional molecular tracking in live cells. Nano Lett., 10(11), 4732–4737. CrossRefGoogle Scholar
  43. Wilson, B. S., Pfeiffer, J. R., & Oliver, J. M. (2002). FcϵRI signaling observed from the inside of the mast cell membrane. Mol. Immunol., 1144, 1–10. Google Scholar
  44. Ying, W., Huerta, G., Zúñiga, M., & Steinberg, S. (2009). Time series analysis of particle tracking data for molecular motion on the cell membrane. Bull. Math. Biol., 71(8), 1967–2024. MathSciNetCrossRefMATHGoogle Scholar
  45. Zaslavsky, G. M. (2002). Chaos, fractional kinetics, and anomalous transport. Phys. Rep., 371, 461–580. MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Society for Mathematical Biology 2012

Authors and Affiliations

  • Flor A. Espinoza
    • 1
    • 2
  • Michael J. Wester
    • 1
  • Janet M. Oliver
    • 2
  • Bridget S. Wilson
    • 2
  • Nicholas L. Andrews
    • 3
  • Diane S. Lidke
    • 2
  • Stanly L. Steinberg
    • 1
  1. 1.Department of Mathematics and StatisticsUniversity of New MexicoAlbuquerqueUSA
  2. 2.Department of PathologyUniversity of New MexicoAlbuquerqueUSA
  3. 3.Department of Obstetrics and GynecologyUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations