Bulletin of Mathematical Biology

, Volume 74, Issue 2, pp 346–355

Electromigration Dispersion in Capillary Electrophoresis

Original Article

Abstract

In a previous paper (Ghosal and Chen in Bull. Math. Biol. 72:2047, 2010), it was shown that the evolution of the solute concentration in capillary electrophoresis is described by a nonlinear wave equation that reduced to Burger’s equation if the nonlinearity was weak. It was assumed that only strong electrolytes (fully dissociated) were present. In the present paper, it is shown that the same governing equation also describes the situation where the electrolytic buffer consists of a single weak acid (or base). A simple approximate formula is derived for the dimensionless peak variance which is shown to agree well with published experimental data.

Keywords

Capillary electrophoresis Electromigration dispersion 

References

  1. Babskii, V., Zhukov, M., & Yudovich, V. (1989). Mathematical theory of electrophoresis. New York: Plenum Publishing. Google Scholar
  2. Camilleri, P. (Ed.) (1998). Capillary electrophoresis, theory & practice. Boca Raton: CRC Press. Google Scholar
  3. Delinger, S. L., & Davis, J. M. (1992). Influence of analyte plug width on plate number in capillary electrophoresis. Anal. Chem., 64(17), 1947–1959. CrossRefGoogle Scholar
  4. Gaš, B. (2009). Theory of electrophoresis: Fate of one equation. Electrophoresis, 30, S7–S15. CrossRefGoogle Scholar
  5. Ghosal, S. (2004). Fluid mechanics of electroosmotic flow and its effect on band broadening in capillary electrophoresis. Electrophoresis, 25, 214–228. CrossRefGoogle Scholar
  6. Ghosal, S., & Chen, Z. (2010). Nonlinear waves in capillary electrophoresis. Bull. Math. Biol., 72, 2047–2066. MathSciNetMATHCrossRefGoogle Scholar
  7. Ghosal, S., & Chen, Z. (2011, in review). Electromigration dispersion in a capillary in the presence of electro-osmotic flow. J. Fluid Mech. Google Scholar
  8. Helfferich, F. G. (1995). Ion exchange. New York: Courier Dover. Google Scholar
  9. Issaq, H. J., Atamna, I. Z., Muschik, G. M., & Janini, G. M. (1991). The effect of electric field strength, buffer type and concentration on separation parameters in capillary zone electrophoresis. Chromatographia, 32(3–4), 155–161. CrossRefGoogle Scholar
  10. Jorgenson, J. W., & Lukacs, K. D. (1981). Zone electrophoresis in open-tubular glass capillaries. Anal. Chem., 53(8), 1298–1302. CrossRefGoogle Scholar
  11. Landers, J. (Ed.) (1996). Introduction to capillary electrophoresis. Boca Raton: CRC Press. Google Scholar
  12. Lukacs, K. D., & Jorgenson, J. W. (1985). Capillary zone electrophoresis: Effect of physical parameters on separation efficiency and quantitation. HRC, J. High Resolut. Chromatogr., 8(8), 407–411. CrossRefGoogle Scholar
  13. Mikkers, F. (1999). Concentration distributions in capillary electrophoresis: Cze in a spreadsheet. Anal. Chem., 71, 522–533. CrossRefGoogle Scholar
  14. Mikkers, F., Everaerts, F., & Verheggen, T. P. (1979). Concentration distributions in free zone electrophoresis. J. Chromatogr., 169, 1–10. CrossRefGoogle Scholar
  15. Saville, D. A., & Palusinski, O. A. (1986). Theory of electrophoretic separations. Part I: Formulation of a mathematical model. AIChE J., 32(2), 207–214. CrossRefGoogle Scholar
  16. Thormann, W., Caslavska, J., Breadmore, M., & Mosher, R. (2009). Dynamic computer simulations of electrophoresis: Three decades of active research. Electrophoresis, 30, S16–S26. CrossRefGoogle Scholar
  17. Walbroehl, Y., & Jorgenson, J. W. (1989). Capillary zone electrophoresis for the determination of electrophoretic mobilities and diffusion coefficients of proteins. J. Microcolumn Sep., 1(1), 41–45. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2011

Authors and Affiliations

  1. 1.Dept. Mech. Eng.Northwestern UniversityEvanstonUSA

Personalised recommendations