Albert, R., & Othmer, H. (2003). The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J. Theor. Biol., 223, 1–18.
MathSciNet
Article
Google Scholar
Balleza, E., Alvarez-Buylla, E., Chaos, A., Kauffman, S. A., Shmulevich, I., & Aldana, M. (2008). Critical dynamics in genetic regulatory networks: Examples from four kingdoms. PLoS ONE, 3(6), e2456.
Article
Google Scholar
Derrida, B., & Pomeau, Y. (1986). Random networks of automata: a simple annealed approximation. Europhys. Lett., 1, 45–49.
Article
Google Scholar
Drossel, B. (2009). Random Boolean networks, Chap. 3, pp. 69–110. Weinheim: Wiley-VCH Verlag GmbH & Co.
Google Scholar
Gambin, A., Lasota, S., & Rutkowski, M. (2006). Analyzing stationary states of gene regulatory network using petri nets. Silico Biol., 6, 93–109.
Google Scholar
Jarrah, A. S., Raposa, B., & Laubenbacher, R. (2007). Nested canalyzing, unate cascade, and polynomial functions. Physica D, 233, 167–174.
MathSciNet
MATH
Article
Google Scholar
Karlssona, F., & Hörnquist, M. (2007). Order or chaos in Boolean gene networks depends on the mean fraction of canalyzing functions. Physica A, 384, 747–757.
Article
Google Scholar
Kauffman, S. A. (1969). Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol., 22(3), 437–467.
Article
Google Scholar
Kauffman, S. A. (1993). The origins of order: self-organization and selection in evolution. London: Oxford University Press.
Google Scholar
Kauffman, S. A., Peterson, C., Samuelsson, B., & Troein, C. (2003). Random Boolean network models and the yeast transcriptional network. Proc. Natl. Acad. Sci., 100(25), 14796–14799.
Article
Google Scholar
Kauffman, S. A., Peterson, C., Samuelsson, B., & Troein, C. (2004). Genetic networks with canalyzing Boolean rules are always stable. Proc. Natl. Acad. Sci., 101(49), 17102–17107.
Article
Google Scholar
Li, F., Long, T., Lu, Y., Ouyang, Q., & Tang, C. (2004). The yeast cell-cycle network is robustly designed. Proc. Natl. Acad. Sci., 11, 4781–4786.
Article
Google Scholar
Nikolajewa, S., Friedel, M., & Wilhelm, T. (2006). Boolean networks with biologically relevant rules show ordered behavior. Biosystems, 90(1), 40–47.
Article
Google Scholar
Nykter, M., Price, N. D., Aldana, M., Ramsey, S. A., Kauffman, S. A., Hood, L. E., Yli-Harja, O., & Shmulevich, I. (2008a). Gene expression dynamics in the macrophage exhibit criticality. Proc. Natl. Acad. Sci., 105, 1897–1900.
Article
Google Scholar
Nykter, M., Price, N. D., Larjo, A., Aho, T., Kauffman, S. A., Yli-Harja, O., & Shmulevich, I. (2008b). Critical networks exhibit maximal information diversity in structure-dynamics relationships. Phys. Rev. Lett., 100, 058702.
Article
Google Scholar
Peixoto, T. P. (2010). The phase diagram of random Boolean networks with nested canalizing functions. Eur. Phys. J. B, 78(2), 187–192.
Article
Google Scholar
Saez-Rodriguez, J., Simeoni, L., Lindquist, J., Hemenway, R., Bommhardt, U., Arndt, B., Haus, U., Weismantel, R., Gilles, E., Klamt, S., & Schraven, B. (2007). A logical model provides insights into T cell receptor signaling. PLoS Comput. Biol., 3, e163.
MathSciNet
Article
Google Scholar
Shmulevich, I., & Kauffman, S. A. (2004). Activities and sensitivities in Boolean network models. Phys. Rev. Lett., 93(4), 048701.
Article
Google Scholar
Shmulevich, I., Kauffman, S. A., & Aldana, M. (2005). Eukaryotic cells are dynamically ordered or critical but not chaotic. Proc. Natl. Acad. Sci., 102, 13439–13444.
Article
Google Scholar
Waddington, C. H. (1942). Canalisation of development and the inheritance of acquired characters. Nature, 150, 563–564.
Article
Google Scholar