Skip to main content
Log in

Renewal-Reward Process Formulation of Motor Protein Dynamics

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Renewal-reward processes are used to provide a framework for the mathematical description of single-molecule bead-motor assays for processive motor proteins. The formulation provides a more powerful, general approach to the fluctuation analysis of bead-motor assays begun by Svoboda et al. (Proc. Natl. Acad. Sci. USA 91(25):11782, 1994). Fluctuation analysis allows one to gain insight into the mechanochemical cycle of motor proteins purely by measuring the statistics of the displacement of the cargo (e.g., bead) the protein transports. The statistical parameters of interest are shown to be the steady-state slopes (in time) of the cumulants of the bead (the cumulant rates). The first two cumulant rates are the steady-state velocity and slope of the variance. The cumulant rates are shown to be insensitive to experimental disturbances such as the initial state of the enzyme and from the viewpoint of modeling, unaffected by substeps. Two existing models—Elston (J. Math. Biol. 41(3):189–206, 2000) and Peskin and Oster (Biophys. J. 68(4):202S–211S, 1995)—are formulated as renewal-reward processes to demonstrate the insight that the formulation affords. A key contribution of the approach is the possibility of accounting for wasted hydrolyses and backward steps in the fluctuation analysis. For example, the randomness parameter defined in the first fluctuation analysis of optical trap based bead-motor assays (Svoboda et al. in Proc. Natl. Acad. Sci. USA 91(25):11782, 1994), loses its original purpose of estimating the number of rate-determining steps in the chemical cycle when backward steps and wasted hydrolyses are present. As a simple application of our formulation, we extend the randomness parameter’s scope by showing how it can be used to infer the presence of wasted hydrolyses and backward steps with certainty. A more powerful fluctuation analysis using higher cumulant rate measurements is proposed: the method allows one to estimates the number of intermediate reactions, the average chemical rate, and the probability of stepping backward or forward. The stability of the method in the presence of measurement errors is demonstrated numerically to encourage its use in experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Astumian, R. D., & Haenggi, P. (2002). Brownian motors. Phys. Today, 55(11), 33–39.

    Article  Google Scholar 

  • Atzberger, P. J., & Peskin, C. S. (2006). A Brownian dynamics model of kinesin in three dimensions incorporating the force-extension profile of the coiled-coil cargo tether. Bull. Math. Biol., 68(1), 131–160.

    Article  MathSciNet  Google Scholar 

  • Bier, M. (1997). Brownian ratchets in physics and biology. Contemp. Phys., 38(6), 371–379.

    Article  Google Scholar 

  • Bier, M. (2005). Modelling processive motor proteins: moving on two legs in the microscopic realm. Contemp. Phys., 46(1), 41–51.

    Article  MathSciNet  Google Scholar 

  • Block, S. M. (2003). Probing the kinesin reaction cycle with a 2 D optical force clamp. Proc. Natl. Acad. Sci. USA, 100(5), 2351–2356.

    Article  Google Scholar 

  • Block, S. M. (2007). Kinesin motor mechanics: binding, stepping, tracking, gating, and limping. Biophys. J., 92(9), 2986–2995.

    Article  Google Scholar 

  • Block, S. M., Goldstein, L. S. B., & Schnapp, B. J. (1990). Bead movement by single kinesin molecules studied with optical tweezers. Nature, 348, 348–352.

    Article  Google Scholar 

  • Boyer, P. D. (1997). The ATP synthase-a splendid molecular machine. Annu. Rev. Biochem., 66(1), 717–749.

    Article  MathSciNet  Google Scholar 

  • Carter, N. J., & Cross, R. A. (2005). Mechanics of the kinesin step. Nature, 435(7040), 308–312.

    Article  Google Scholar 

  • Cinlar, E. (1975). Introduction to stochastic processes. Englewood Cliffs: Prentice-Hall.

    MATH  Google Scholar 

  • Cox, D. R., & Miller, H. D. (1977). The theory of stochastic processes. London: Chapman & Hall/CRC.

    MATH  Google Scholar 

  • Cross, R. A. (2004). The kinetic mechanism of kinesin. Trends Biochem. Sci., 29(6), 301–309.

    Article  Google Scholar 

  • Elston, T. C. (2000). A macroscopic description of biomolecular transport. J. Math. Biol., 41(3), 189–206.

    Article  MathSciNet  MATH  Google Scholar 

  • Fisher, M. E., & Kolomeisky, A. B. (2001). Simple mechanochemistry describes the dynamics of kinesin molecules. Proc. Natl. Acad. Sci. USA, 98(14), 7748–7753.

    Article  Google Scholar 

  • Geeves, M. A., & Holmes, K. C. (1999). Structural mechanism of muscle contraction. Annu. Rev. Biochem., 68(1), 687–728.

    Article  Google Scholar 

  • Gilbert, S. P., Webb, M. R., Brune, M., & Johnson, K. A. (1995). Pathway of processive ATP hydrolysis by kinesin. Nature, 373(6516), 671–676.

    Article  Google Scholar 

  • Goodson, H. V., Kang, S. J., & Endow, S. A. (1994). Molecular phylogeny of the kinesin family of microtubule motor proteins. J. Cell. Sci., 107(7), 1875.

    Google Scholar 

  • Grimmett, G., & Stirzaker, D. (2001). Probability and random processes. Cambridge: Oxford University Press.

    Google Scholar 

  • Guydosh, N. R., & Block, S. M. (2006). Backsteps induced by nucleotide analogs suggest the front head of kinesin is gated by strain. Proc. Natl. Acad. Sci. USA, 103(21), 8054–8059.

    Article  Google Scholar 

  • Hill, T. L. (1989). Free energy transduction and biochemical cycle kinetics. Berlin: Springer.

    Book  Google Scholar 

  • Howard, J. (1996). The movement of kinesin along microtubules. Annu. Rev. Physiol., 58(1), 703–729.

    Article  Google Scholar 

  • Howard, J. (1997). Molecular motors: structural adaptations to cellular functions. Nature, 389(6651), 561–567.

    Article  Google Scholar 

  • Howard, J. (2001). Mechanics of motor proteins and the cytoskeleton. Sunderland: Sinauer.

    Google Scholar 

  • Howard, J., Hudspeth, A. J., & Vale, R. D. (1989). Movement of microtubules by single kinesin molecules. Nature, 342(6246), 154.

    Article  Google Scholar 

  • Johnson, W. P. (2002). The curious history of Faà di Bruno’s formula. Am. Math. Mon., 109, 217–234.

    Article  MATH  Google Scholar 

  • Karlin, S., & Taylor, H. M. (1975). A first course in stochastic processes. New York: Academic Press.

    MATH  Google Scholar 

  • Kramers, H. A. (1940). Brownian motion in a field of force and the diffusion model of chemical reactions. Physica, 7(4), 284–304.

    Article  MathSciNet  MATH  Google Scholar 

  • Krishnan, A. (2008). The random walker: stochastic mechano-chemical models for motor proteins. Master’s thesis, Mechanical Engineering, University of Michigan.

  • Krishnan, A., & Epureanu, B. I. (2008). A stochastic mechano-chemical model for cooperative motor protein dynamics. In Proceedings of SMASIS 2008. New York: ASME.

    Google Scholar 

  • Lindén, M., & Wallin, M. (2007). Dwell time symmetry in random walks and molecular motors. Biophys. J., 92(11), 3804–3816.

    Article  Google Scholar 

  • Mehta, A. (2001). Myosin learns to walk. J. Cell. Sci., 114(11), 1981.

    Google Scholar 

  • Mehta, A. D., Rief, M., Spudich, J. A., Smith, D. A., & Simmons, R. M. (1999a). Single-molecule biomechanics with optical methods. Science, 283(5408), 1689.

    Article  Google Scholar 

  • Mehta, A. D., Rock, R. S., Rief, M., Spudich, J. A., Mooseker, M. S., & Cheney, R. E. (1999b). Myosin-V is a processive actin-based motor. Nature, 400(6744), 590–596.

    Article  Google Scholar 

  • Mogilner, A., Fisher, A. J., & Baskin, R. J. (2001). Structural changes in the neck linker of kinesin explain the load dependence of the motor’s mechanical cycle. J. Theor. Biol., 211(2), 143–157.

    Article  Google Scholar 

  • Peskin, C. S., & Oster, G. (1995). Coordinated hydrolysis explains the mechanical behavior of kinesin. Biophys. J., 68(4), 202S–211S.

    Google Scholar 

  • Prager, T., Schimansky-Geier, L., & Sokolov, I. M. (2005). Periodic driving controls random motion of Brownian steppers. J. Phys., Condens. Matter, 17(47), 3661–3672.

    Article  Google Scholar 

  • Purcell, E. M. (1977). Life at low Reynolds number. Am. J. Phys., 45(1), 3–11.

    Article  MathSciNet  Google Scholar 

  • Qian, H., & Elson, E. L. (2002). Single-molecule enzymology: stochastic Michaelis–Menten kinetics. Biophys. Chem., 101, 565–576.

    Article  Google Scholar 

  • Reimann, P., & Hänggi, P. (2002). Introduction to the physics of Brownian motors. Appl. Phys. A, Mater. Sci. Process., 75(2), 169–178.

    Article  Google Scholar 

  • Rice, S., Lin, A. W., Safer, D., Hart, C. L., Naber, N., Carragher, B. O., Cain, S. M., Pechatnikova, E., Wilson-Kubalek, E. M., & Whittaker, M. (1999). A structural change in the kinesin motor protein that drives motility. Nature, 402, 778–784.

    Article  Google Scholar 

  • Rief, M., Rock, R. S., Mehta, A. D., Mooseker, M. S., Cheney, R. E., & Spudich, J. A. (2000). Myosin-V stepping kinetics: a molecular model for processivity. Proc. Natl. Acad. Sci. USA, 97(17), 9482.

    Article  Google Scholar 

  • Ross, S. M. (1983). Stochastic processes [M]. New York: Willey.

    Google Scholar 

  • Santos, J. E., Franosch, T., Parmeggiani, A., & Frey, E. (2005). Renewal processes and fluctuation analysis of molecular motor stepping. Phys. Biol., 2, 207–222.

    Article  Google Scholar 

  • Schief, W. R., & Howard, J. (2001). Conformational changes during kinesin motility. Curr. Opin. Cell Biol., 13(1), 19–28.

    Article  Google Scholar 

  • Schnitzer, M. J., & Block, S. M. (1997). Kinesin hydrolyses one ATP per 8-nm step. Nature, 388(6640), 386–390.

    Article  Google Scholar 

  • Sheetz, M. P., & Spudich, J. A. (1983). Movement of myosin-coated fluorescent beads on actin cables in vitro. Nature, 303(5912), 31–35.

    Article  Google Scholar 

  • Smith, W. L. (1958). Renewal theory and its ramifications. J. R. Stat. Soc., Ser. B, Stat. Methodol., 20, 243–302.

    Google Scholar 

  • Smith, W. L. (1959). On the cumulants of renewal processes. Biometrika, 46(1–2), 1–29.

    MathSciNet  MATH  Google Scholar 

  • Spudich, J. A. (1994). How molecular motors work. Nature, 372, 515.

    Article  Google Scholar 

  • Svoboda, K., & Block, S. M. (1994). Force and velocity measured for single kinesin molecules. Cell, 77(5), 773–784.

    Article  Google Scholar 

  • Svoboda, K., Schmidt, C. F., Schnapp, B. J., & Block, S. M. (1993). Direct observation of kinesin stepping by optical trapping interferometry. Nature, 365(6448), 721–727.

    Article  Google Scholar 

  • Svoboda, K., Mitra, P. P., & Block, S. M. (1994). Fluctuation analysis of motor protein movement and single enzyme kinetics. Proc. Natl. Acad. Sci. USA, 91(25), 11782.

    Article  Google Scholar 

  • Tsygankov, D., Lindén, M., & Fisher, M. E. (2007). Back-stepping, hidden substeps, and conditional dwell times in molecular motors. Phys. Rev. E, 75(2), 021909.

    Article  Google Scholar 

  • Uhlenbeck, G. E., & Ornstein, L. S. (1930). On the theory of the Brownian motion. Phys. Rev., 36(5), 823–841.

    Article  Google Scholar 

  • Van Kampen, N.G. (2007). Stochastic processes in physics and chemistry. Amsterdam: North-Holland.

    Google Scholar 

  • Visscher, K., Schnitzer, M. J., & Block, S. M. (1999). Single kinesin molecules studied with a molecular force clamp. Nature, 400(6740), 184–189.

    Article  Google Scholar 

  • Wang, H. (2007). A new derivation of the randomness parameter. J. Math. Phys., 48(10), 103301.

    Article  MathSciNet  Google Scholar 

  • Wang, H., & Qian, H. (2007). On detailed balance and reversibility of semi-Markov processes and single-molecule enzyme kinetics. J. Math. Phys., 48(1), 013303.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan I. Epureanu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnan, A., Epureanu, B.I. Renewal-Reward Process Formulation of Motor Protein Dynamics. Bull Math Biol 73, 2452–2482 (2011). https://doi.org/10.1007/s11538-011-9632-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-011-9632-x

Keywords

Navigation