Skip to main content
Log in

A Continuum Mathematical Model of the Developing Murine Retinal Vasculature

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Angiogenesis, the process of new vessel growth from pre-existing vasculature, is crucial in many biological situations such as wound healing and embryogenesis. Angiogenesis is also a key regulator of pathogenesis in many clinically important disease processes, for instance, solid tumour progression and ocular diseases. Over the past 10–20 years, tumour-induced angiogenesis has received a lot of attention in the mathematical modelling community and there have also been some attempts to model angiogenesis during wound healing. However, there has been little modelling work of vascular growth during normal development. In this paper, we describe an in silico representation of the developing retinal vasculature in the mouse, using continuum mathematical models consisting of systems of partial differential equations. The equations describe the migratory response of cells to growth factor gradients, the evolution of the capillary blood vessel density, and of the growth factor concentration. Our approach is closely coupled to an associated experimental programme to parameterise our model effectively and the simulations provide an excellent correlation with in vivo experimental data. Future work and development of this model will enable us to elucidate the impact of molecular cues upon vasculature development and the implications for eye diseases such as diabetic retinopathy and neonatal retinopathy of prematurity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alarcon, T., Byrne, H., & Maini, P. K. (2003). A cellular automaton model for tumour growth in inhomogeneous environment. Journal of Theoretical Biology, 225(2), 257–274.

    Article  MathSciNet  Google Scholar 

  • Anderson, A. R. A., & Chaplain, M. A. J. (1998). Continuous and discrete mathematical models of tumour-induced angiogenesis. Bulletin of Mathematical Biology, 60, 857–899.

    Article  MATH  Google Scholar 

  • Balding, D., & McElwain, D. L. S. (1985). A mathematical model of tumour-induced capillary growth. Journal of Theoretical Biology, 114(1), 53–73.

    Article  Google Scholar 

  • Bray, D. (1992). Cell movements. New York: Garland Publishing.

    Google Scholar 

  • Byrne, H. M., & Chaplain, M. A. J. (1995). Mathematical models for tumour angiogenesis: numerical simulations and nonlinear wave solutions. Bulletin of Mathematical Biology, 57(3), 461–486.

    MATH  Google Scholar 

  • Byrne, H. M., Chaplain, M. A. J., Hopkinson, I., & Evans, D. (2000). Mathematical modelling of angiogenesis in wound healing: comparison of theory and experiment. Journal of Theoretical Medicine, 2, 175–197.

    Article  MATH  Google Scholar 

  • Chaplain, M. A. J. (1995). The mathematical modelling of tumour angiogenesis and invasion. Acta Biotheoretica, 43, 387–402.

    Article  Google Scholar 

  • Chaplain, M. A. J., McDougall, S. R., & Anderson, A. R. A. (2006). Mathematical modelling of tumor-induced angiogenesis. Annual Review of Biomedical Engineering, 8, 233–257.

    Article  Google Scholar 

  • Dorrell, M. I., Aguilar, E., & Friedlander, M. (2002). Retinal vascular development is mediated by endothelial filopodia, a preexisting astrocytic template and specific R-cadherin adhesion. Investigative Ophthalmology & Visual Science, 43(11), 3500–3510.

    Google Scholar 

  • Dyson, M., Young, S. R., Lynch, J. A., & Lang, S. (1992). Comparison of the effects of moist and dry conditions on dermal repair. Journal of Investigative Dermatology, 6, 729–733.

    Article  Google Scholar 

  • Flegg, J. A., McElwain, D. L. S., Byrne, H. M., & Turner, I. W. (2009). A three species model to simulate application of hyperbaric oxygen therapy to chronic wounds. PLoS Computational Biology, 5(7), e1000451.

    Article  MathSciNet  Google Scholar 

  • Folkman, J. (1995). Angiogenesis in cancer, vascular, rheumatoid and other disease. Naturalna Medycyna, 1(1), 27–31.

    Article  Google Scholar 

  • Fruttiger, M., Calver, A. R., Krüger, W. H., Mudhar, H. S., Michalovich, D., Takakura, N., Nishikawa, S., & Richardson, W. D. (1996). PDGF mediates a neuron-astrocyte interaction in the developing retina. Neuron, 17(6), 1117–1131.

    Article  Google Scholar 

  • Gaffney, E. A., Pugh, K., Maini, P. K., & Arnold, F. (2002). Investigating a simple model of cutaneous wound healing angiogenesis. Journal of Theoretical Biology, 45, 337–374.

    MathSciNet  MATH  Google Scholar 

  • Gerhardt, H., Golding, M., Fruttiger, M., Ruhrberg, C., Lundkvist, A., Abramsson, A., Jeltsch, M., Mitchell, C., Alitalo, K., Shima, D., & Betsholtz, C. (2003). VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. The Journal of Cell Biology, 161(6), 1163–1177.

    Article  Google Scholar 

  • Levine, H. A., Pamuk, S., Sleeman, B. D., & Nielsen-Hamilton, M. (2001). Mathematical modeling of the capillary formation and development in tumor angiogenesis: penetration into the stroma. Bulletin of Mathematical Biology, 63(5), 801–863.

    Article  Google Scholar 

  • Macklin, P., McDougall, S. R., Anderson, A. R. A., Chaplain, M. A. J., Cristini, V., & Lowengrub, J. (2009). Multiscale modelling and nonlinear simulation of vascular tumour growth. Journal of Mathematical Biology, 58, 765–798.

    Article  MathSciNet  Google Scholar 

  • Maggelasis, S. A., & Savakis, A. E. (1996). A mathematical model of growth factor induced cappilary growth in the Retina. Mathematical and Computer Modelling, 24(7), 33–41.

    Article  MathSciNet  Google Scholar 

  • Matzavinos, A., Kao, C. Y., Green, J. E. F., Sutradhar, A., Miller, M., & Friedman, A. (2009). Modeling oxygen transport in surgical tissue transfer. Proceedings of the National Academy of Sciences of the United States of America, 106, 12091–12096.

    Article  Google Scholar 

  • McDougall, S. R., Anderson, A. R. A., Chaplain, M. A. J., & Sherratt, J. A. (2002). Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies. Bulletin of Mathematical Biology, 64, 673–702.

    Article  Google Scholar 

  • McDougall, S. R., Anderson, A. R. A., & Chaplain, M. A. J. (2006). Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. Journal of Theoretical Biology, 241, 564–589.

    Article  MathSciNet  Google Scholar 

  • Olsen, L., Sherratt, J. A., Maini, P. K., & Arnold, F. (1997). A mathematical model for the capillary endothelial cell-extracellular matrix interactions in wound-healing angiogenesis. IMA Journal of Mathematics Applied in Medicine and Biology, 14, 261–281.

    Article  MATH  Google Scholar 

  • Orme, M. E., & Chaplain, M. A. J. (1997). Two-dimensional models of tumour angiogenesis and anti-angiogenesis strategies. IMA Journal of Mathematics Applied in Medicine and Biology, 14, 189–205.

    Article  MATH  Google Scholar 

  • Owen, M. R., Alarcón, T., Maini, P. K., & Byrne, H. M. (2009). Angiogenesis and vascular remodelling in normal and cancerous tissues. Journal of Mathematical Biology, 58, 689–721.

    Article  MathSciNet  Google Scholar 

  • Pettet, G. J., Byrne, H. M., McElwain, D. L., & Norbury, J. (1996a). A model of wound-healing angiogenesis in soft tissue. Mathematical Biosciences, 136(1), 35–63.

    Article  MATH  Google Scholar 

  • Pettet, G., Chaplain, M. A. J., McElwain, D. L. S., & Byrne, H. M. (1996b). On the role of angiogenesis in wound healing. Proceedings of the Royal Society of London. Series B, Biological Sciences, 263, 1487–1493.

    Article  Google Scholar 

  • Schugart, R. C., Friedman, A., & Chandan, K. S. (2008). Wound angiogenesis as a function of tissue oxygen tension: a mathematical model. Proceedings of the National Academy of Sciences of the United States of America, 105(7), 2628–2633.

    Article  Google Scholar 

  • Sherratt, JA, & Murray, J. D. (1992). Epidermal wound healing: the clinical implications of a simple mathematical model. Cell Transplantation, 1, 365–371.

    Google Scholar 

  • Stéphanou, A., McDougall, S. R., Anderson, A. R. A., & Chaplain, M. A. J. (2005). Mathematical modelling of flow in 2D and 3D vascular networks: applications to anti-angiogenic and chemotherapeutic drug strategies. Mathematical and Computer Modelling, 41, 1137–1156.

    Article  MathSciNet  MATH  Google Scholar 

  • Stéphanou, A., McDougall, S. R., Anderson, A. R. A., & Chaplain, M. A. J. (2006). Mathematical modelling of the influence of blood rheological properties upon adaptative tumour-induced angiogenesis. Mathematical and Computer Modelling, 44, 96–123.

    Article  MathSciNet  MATH  Google Scholar 

  • Stokes, C. L., Rupnick, M. A., Williams, S. K., & Lauffenburger, D. A. (1990). Chemotaxis of human microvessel endothelial cells in response to acidic fibroblast growth factor. Labor & Investments, 63(5), 657–668.

    Google Scholar 

  • Stone, J., Itin, A., Alon, T., Pe’er, J., Gnessin, H., Chan-Ling, T., & Keshet, E. (1995). Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. The Journal of Neuroscience, 15, 4738–4747.

    Google Scholar 

  • Uemura, A., Kusuhara, S., Wiegand, S. J., Yu, R. T., & Nishikawa, S. (2006). Tlx acts as a proangiogenic switch by regulating extracellular assembly of fibronectin matrices in retinal astrocytes. The Journal of Clinical Investigation, 116(2), 369–377.

    Article  Google Scholar 

  • West, H., Richardson, W. D., & Fruttiger, M. (2005). Stabilization of the retinal vascular network by reciprocal feedback between blood vessels and astrocytes. Development, 132(8), 1855–1862.

    Article  Google Scholar 

  • Xue, C., Friedman, A., & Sen, C. K. (2009). A mathematical model of ischemic cutaneous wounds. Proceedings of the National Academy of Sciences of the United States of America, 106(39), 16782–16787.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Aubert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aubert, M., Chaplain, M.A.J., McDougall, S.R. et al. A Continuum Mathematical Model of the Developing Murine Retinal Vasculature. Bull Math Biol 73, 2430–2451 (2011). https://doi.org/10.1007/s11538-011-9631-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-011-9631-y

Keywords

Navigation