Bulletin of Mathematical Biology

, Volume 73, Issue 9, pp 2201–2212 | Cite as

Bards, Poets, and Cliques: Frequency-Dependent Selection and the Evolution of Language Genes

Original Article

Abstract

The ability of humans to communicate via language is a complex, adapted phenotype, which undoubtedly has a recently evolved genetic component. However, the evolutionary dynamics of language-associated alleles are poorly understood. To improve our knowledge of such systems, a population-genetics model for language-associated genes is developed. (The model is general and applicable to social interactions other than communication.) When an allele arises that potentially improves the ability of individuals to communicate, it will experience positive frequency-dependent selection because its fitness will depend on how many other individuals communicate the same way. Consequently, new and rare alleles are selected against, posing a problem for the evolutionary origin of language. However, the model shows that if individuals form language-based cliques, then novel language-associated alleles can sweep through a population. Thus, the origin of language ability can be sufficiently explained by Darwinian processes operating on genetic diversity in a finite population of human ancestors.

Keywords

Pairwise interaction Language faculty Assortative interaction Dynamics Stability FOXP2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asmussen, M. A., & Basnayake, E. (1990). Frequency-dependent selection: the high potential for permanent genetic variation in the diallelic, pairwise interaction model. Genetics, 125, 215–230. Google Scholar
  2. Asmussen, M. A., Cartwright, R. A., & Spencer, H. G. (2004). Frequency-dependent selection with dominance: a window onto the behavior of the mean fitness. Genetics, 167, 499–512. CrossRefGoogle Scholar
  3. Brighton, H. (2002). Compositional syntax from cultural transmission. Artif. Life, 8, 25–54. CrossRefGoogle Scholar
  4. Cavalli-Sforza, L. L., & Feldman, M. W. (1983). Paradox of the evolution of communication and of social interactivity. Proc. Natl. Acad. Sci. USA, 80, 2017–2021. MathSciNetMATHCrossRefGoogle Scholar
  5. Chater, N., Reali, F., & Christiansen, M. H. (2009). Restrictions on biological adaptation in language evolution. Proc. Natl. Acad. Sci. USA, 106, 1015–1020. CrossRefGoogle Scholar
  6. Christiansen, M. H., & Chater, N. (2008). Language as shaped by the brain. Behav. Brain Sci., 31, 489–508; discussion 509–558. Google Scholar
  7. Clark, A. G., Glanowski, S., Nielsen, R., Thomas, P. D., Kejariwal, A., Todd, M. A., Tanenbaum, D. M., Civello, D., Lu, F., Murphy, B., Ferriera, S., Wang, G., Zheng, X., White, T. J., Sninsky, J. J., Adams, M. D., & Cargill, M. (2003). Inferring nonneutral evolution from human-chimp-mouse orthologous gene trios. Science, 302, 1960–1963. CrossRefGoogle Scholar
  8. Coop, G., Bullaughey, K., Luca, F., & Przeworski, M. (2008). The timing of selection at the human FOXP2 gene. Mol. Biol. Evol., 25, 1257–1259. CrossRefGoogle Scholar
  9. Corballis, M. C. (2009). The evolution of language. Ann. N.Y. Acad. Sci., 1156, 19–43. CrossRefGoogle Scholar
  10. Coyne, J. A., Barton, N. H., & Turelli, M. (1997). Perspective: a critique of Sewall Wright’s shifting balance theory of evolution. Evolution, 51, 643–671. CrossRefGoogle Scholar
  11. Darwin, C. R. (1871). The descent of man and selection in relation to sex. London: Murray CrossRefGoogle Scholar
  12. Dediu, D., & Ladd, D. R. (2007). Linguistic tone is related to the population frequency of the adaptive haplogroups of two brain size genes, aspm and microcephalin. Proc. Natl. Acad. Sci. USA, 104, 10944–10949. CrossRefGoogle Scholar
  13. Enard, W., Przeworski, M., Fisher, S. E., Lai, C. S. L., Wiebe, V., Kitano, T., Monaco, A. P., & Pääbo, S. (2002). Molecular evolution of FOXP2, a gene involved in speech and language. Nature, 418, 869–872. CrossRefGoogle Scholar
  14. Evans, N., & Levinson, S. C. (2009). The myth of language universals: language diversity and its importance for cognitive science. Behav. Brain Sci., 32, 429–448; discussion 448–494. CrossRefGoogle Scholar
  15. Fisher, S. E., & Scharff, C. (2009). Foxp2 as a molecular window into speech and language. Trends Genet., 25, 166–177. CrossRefGoogle Scholar
  16. Fisher, S. E., Vargha-Khadem, F., Watkins, K. E., Monaco, A. P., & Pembrey, M. E. (1998). Localisation of a gene implicated in a severe speech and language disorder. Nat. Genet., 18, 168–170. CrossRefGoogle Scholar
  17. Gardner, A., & West, S. A. (2010). Greenbeards. Evolution, 64, 25–38. CrossRefGoogle Scholar
  18. Gould, S., & Lewontin, R. (1979). Spandrels of San-Marco and the Panglossian paradigm—a critique of the adaptationist program. Proc. Biol. Sci., 205, 581–598. CrossRefGoogle Scholar
  19. Hagoort, P. (2005). On broca, brain, and binding: a new framework. Trends Cogn. Sci., 9, 416–423. CrossRefGoogle Scholar
  20. Hamilton, W. D. (1975). Innate social aptitudes of man: an approach from evolutionary genetics. In R. Fox (Ed.), ASA studies 4: biosocial anthropology (pp. 133–153). London: Malaby. Google Scholar
  21. Hauser, M. D., Chomsky, N., & Fitch, W. T. (2002). The faculty of language: what is it, who has it, and how did it evolve? Science, 298, 1569–1579. CrossRefGoogle Scholar
  22. Lachmann, M., & Bergstrom, C. T. (2004). The disadvantage of combinatorial communication. Proc. Biol. Sci., 271, 2337–2343. CrossRefGoogle Scholar
  23. Lai, C. S., Fisher, S. E., Hurst, J. A., Vargha-Khadem, F., & Monaco, A. P. (2001). A forkhead-domain gene is mutated in a severe speech and language disorder. Nature, 413, 519–523. CrossRefGoogle Scholar
  24. Liu, H., Prugnolle, F., Manica, A., & Balloux, F. (2006). A geographically explicit genetic model of worldwide human-settlement history. Am. J. Hum. Genet., 79, 230–237. CrossRefGoogle Scholar
  25. Nishimura, T., Mikami, A., Suzuki, J., & Matsuzawa, T. (2006). Descent of the hyoid in chimpanzees: evolution of face flattening and speech. J. Hum. Evol., 51, 244–254. CrossRefGoogle Scholar
  26. Nowak, M. A., & Krakauer, D. C. (1999). The evolution of language. Proc. Natl. Acad. Sci. USA, 96, 8028–8033. CrossRefGoogle Scholar
  27. Nowak, M. A., Plotkin, J. B., & Jansen, V. A. (2000). The evolution of syntactic communication. Nature, 404, 495–498. CrossRefGoogle Scholar
  28. Pinker, S., & Bloom, P. (1990). Natural language and natural selection. Behav. Brain Sci., 13, 707–784. CrossRefGoogle Scholar
  29. Pinker, S., & Jackendoff, R. (2005). The faculty of language: what’s special about it? Cognition, 95, 201–236. CrossRefGoogle Scholar
  30. Rizzolatti, G., & Arbib, M. A. (1998). Language within our grasp. Trends Neurosci., 21, 188–194. CrossRefGoogle Scholar
  31. Smith, K. (2004). The evolution of vocabulary. J. Theor. Biol., 228, 127–142. CrossRefGoogle Scholar
  32. Smith, K., & Kirby, S. (2008). Cultural evolution: implications for understanding the human language faculty and its evolution. Philos. Trans. R. Soc. Lond. B, Biol. Sci., 363, 3591–3603. CrossRefGoogle Scholar
  33. Smith, K., Brighton, H., & Kirby, S. (2003). Complex systems in language evolution: the cultural emergence of compositional structure. Adv. Complex Syst., 6, 537–558. CrossRefGoogle Scholar
  34. Vargha-Khadem, F., Watkins, K., Alcock, K., Fletcher, P., & Passingham, R. (1995). Praxic and nonverbal cognitive deficits in a large family with a genetically transmitted speech and language disorder. Proc. Natl. Acad. Sci. USA, 92, 930–933. CrossRefGoogle Scholar
  35. von Humboldt, W. (1836). Über die Verschiedenheit des menschlichen Sprachbaus und ihren Einfluss auf die geistige Entwicklung des Menschengeschlechts. Bonn: Dummlers. Google Scholar
  36. Whitlock, M. C., & Phillips, P. C. (2000). The exquisite corpse: a shifting view of the shifting balance. Trends Ecol. Evol., 15, 347–348. CrossRefGoogle Scholar
  37. Wilson, D. S., & Dugatkin, L. A. (1997). Group selection and assortative interactions. Am. Nat., 149, 336–351. CrossRefGoogle Scholar
  38. Wray, A. (1998). Protolanguage as a holistic system for social interaction. Lang. Commun., 18, 47–67. CrossRefGoogle Scholar
  39. Wright, S. (1931). Evolution in Mendelian populations. Genetics, 16, 97–159. Google Scholar

Copyright information

© Society for Mathematical Biology 2010

Authors and Affiliations

  1. 1.Department of Biology & BiochemistryUniversity of HoustonHoustonUSA

Personalised recommendations