Skip to main content
Log in

Coherent Infomax as a Computational Goal for Neural Systems

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Signal processing in the cerebral cortex is thought to involve a common multi-purpose algorithm embodied in a canonical cortical micro-circuit that is replicated many times over both within and across cortical regions. Operation of this algorithm produces widely distributed but coherent and relevant patterns of activity. The theory of Coherent Infomax provides a formal specification of the objectives of such an algorithm. It also formally derives specifications for both the short-term processing dynamics and for the learning rules whereby the connection strengths between units in the network can be adapted to the environment in which the system finds itself. A central assumption of the theory is that the local processors can combine reliable signal coding with flexible use of those codes because they have two classes of synaptic connection: driving connections which specify the information content of the neural signals, and contextual connections which modulate that signal processing. Here, we make the biological relevance of this theory more explicit by putting more emphasis upon the contextual guidance of ongoing processing, by showing that Coherent Infomax is consistent with a particular Bayesian interpretation for the contextual guidance of learning and processing, by explicitly specifying rules for on-line learning, and by suggesting approximations by which the learning rules can be made computationally feasible within systems composed of very many local processors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aitchison, J., & Kay, J. W. (1975). Principles, practice and performance in decision making in clinical medicine. In D. J. White & K. C. Bowen (Eds.), The role and effectiveness of theories of decision in practice (pp. 252–272). London: Hodder & Stoughton.

    Google Scholar 

  • Artola, A., Brocher, S., & Singer, W. (1990). Different voltage-dependent thresholds for the induction of long-term depression and long-term potentiation in slices of rat visual cortex. Nature, 347, 69–72.

    Article  Google Scholar 

  • Atick, J. J. (1992). Could information theory provide an ecological theory of sensory processing? Netw., Comput. Neural Syst., 3, 213–251.

    Article  MATH  Google Scholar 

  • Attneave, F. (1959). Applications of information theory to psychology. New York: Holt, Rinehart & Winston.

    Google Scholar 

  • Becker, S. (1992). An information-theoretic unsupervised learning algorithm for neural networks. Ph.D. Thesis, University of Toronto.

  • Becker, S. (1993). Learning to categorise objects using temporal coherence. In S. J. Hanson, J. D. Cowan & C. L. Giles (Eds.), Advances in neural information processing systems (Vol. 5, pp. 361–368). San Mateo: Morgan Kaufmann.

    Google Scholar 

  • Becker, S. (1995). JPMAX: learning to recognise moving objects as a model-fitting problem. In G. Tesauro, D. S. Touretzky & T. K. Leen (Eds.), Advances in neural information processing systems (Vol. 7, pp. 933–940). Cambridge: MIT Press.

    Google Scholar 

  • Becker, S. (1996). Mutual information maximization: models of cortical self-organization. Netw., Comput. Neural Syst., 7, 7–31.

    Article  MATH  Google Scholar 

  • Becker, S., & Hinton, G. E. (1992). Self-organizing neural network that discovers surfaces in random-dot stereograms. Nature, 355, 161–163.

    Article  Google Scholar 

  • Becker, S., & Hinton, G. E. (1995). Spatial coherence as an internal teacher for a neural network. In Y. Chauvin & D. Rumelhart (Eds.), Backpropagation: theory, architectures and applications (pp. 313–349). Hillsdale: Erlbaum.

    Google Scholar 

  • Bell, A. J., & Sejnowski, T. J. (1995). An information maximisation approach to blind separation and blind deconvolution. Neural Comput., 7, 1129–1159.

    Article  Google Scholar 

  • Chechik, G., Globerson, A., Tishby, N., & Weiss, Y. (2005). Information bottleneck for Gaussian variables. J. Mach. Learn. Res., 6, 165–188.

    MathSciNet  Google Scholar 

  • Creutzig, F., & Sprekeler, H. (2008). Predictive coding and the slowness principle: an information-theoretic approach. Neural Comput., 20, 1026–1041.

    Article  MathSciNet  MATH  Google Scholar 

  • DeWeese, M. (1996). Optimization principles for the neural code. Netw., Comput. Neural Syst., 7, 325–331.

    Article  MATH  Google Scholar 

  • Doya, K., Ishii, S., Pouget, A., & Rao, R. P. N. (Eds.) (2007). Bayesian brain: probabilistic approaches to neural coding. Cambridge: MIT Press.

    MATH  Google Scholar 

  • Finger, S. (1994). Origins of neuroscience. New York: Oxford University Press.

    Google Scholar 

  • Friston, K. (2003). Learning and inference in the brain. Neural Netw., 16, 1325–1352.

    Article  Google Scholar 

  • Friston, K. J. (2010). The free-energy principle: a unified brain theory? Nat. Rev. Neurosci., 11, 127–138.

    Article  Google Scholar 

  • Gokhale, D. V., & Kullback, S. (1978). The information in contingency tables. New York: Dekker.

    MATH  Google Scholar 

  • Hamming, R. W. (1980). Coding and information theory. Englewood Cliffs: Prentice-Hall.

    MATH  Google Scholar 

  • Holden, J. G., Van Orden, G. C., & Turvey, M. T. (2009). Dispersal of response times reveals cognitive dynamics. Psychol. Rev., 116, 318–342.

    Article  Google Scholar 

  • Intrator, N., & Cooper, L. N. (1995). Information theory of visual plasticity. In M. A. Arbib (Ed.), The handbook of brain theory and neural networks (pp. 484–487). Boston: MIT Press.

    Google Scholar 

  • Kay, J. (2000). Neural networks for unsupervised learning based on information theory. In J. W. Kay & D. M. Titterington (Eds.), Statistics and neural networks: advances at the interface (pp. 25–63). Oxford: Oxford University Press.

    Google Scholar 

  • Kay, J., Floreano, D., & Phillips, W. A. (1998). Contextually guided unsupervised learning using local multivariate binary processors. Neural Netw., 11, 117–140.

    Article  Google Scholar 

  • Kay, J., & Phillips, W. A. (1994). Activation functions, computational goals and learning rules for local processors with contextual guidance (Technical Report CCCN-15). Centre for Cognitive and Computational Science, University of Stirling.

  • Kay, J., & Phillips, W. A. (1997). Activation functions, computational goals and learning rules for local processors with contextual guidance. Neural Comput., 9, 895–910.

    Article  Google Scholar 

  • Kello, C. T., Beltz, B. C., Holden, J. G., & Van Orden, G. C. (2007). The emergent coordination of cognitive function. J. Exp. Psychol. Gen., 136, 551–568.

    Article  Google Scholar 

  • Körding, K. P., & König, P. (2000). Learning with two sites of synaptic integration. Netw., Comput. Neural Syst., 11, 1–15.

    Article  Google Scholar 

  • Körding, K. P., & Wolpert, D. M. (2004). Bayesian integration in sensorimotor learning. Nature, 427, 244–247.

    Article  Google Scholar 

  • Kullback, S. (1959). Information theory and statistics. New York: Wiley.

    MATH  Google Scholar 

  • Lamme, V. A. F., & Roelfsema, P. R. (2000). The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci., 23, 571–579.

    Article  Google Scholar 

  • Lee, T. S., & Mumford, D. (2003). Hierarchical Bayesian inference in the visual cortex. J. Opt. Soc. Am., 20(7), 1434–1448.

    Article  Google Scholar 

  • Lewis, D. A., Hashimoto, T., & Volk, D. W. (2005). Cortical inhibitory neurons and schizophrenia. Nat. Rev. Neurosci., 6, 312–324.

    Article  Google Scholar 

  • Lindley, D. V. (1956). On a measure of information provided by an experiment. Ann. Math. Stat., 27, 986–1005.

    Article  MathSciNet  MATH  Google Scholar 

  • Linsker, R. (1988). Self-organization in a perceptual network. Computer, 21, 105–117.

    Article  Google Scholar 

  • Linsker, R. (1992). Local synaptic learning rules suffice to maximize mutual information in a linear network. Neural Comput., 4, 691–702.

    Article  Google Scholar 

  • McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys., 5, 115–133.

    Article  MathSciNet  MATH  Google Scholar 

  • McGill, W.J. (1954). Multivariate information transmission. Psychometrika, 19, 97–116.

    Article  MATH  Google Scholar 

  • Optican, L. M., Gawne, T. J., Richmond, B. J., & Joseph, P. J. (1991). Unbiased measures of transmitted information and channel capacity from multivariate neuronal data. Biol. Cybern., 65, 305–310.

    Article  Google Scholar 

  • Phillips, W. A., & Craven, B. (2000). Interactions between coincident and orthogonal cues to texture boundaries. Percept. Psychophys., 62, 1019–1038.

    Article  Google Scholar 

  • Phillips, W. A., Kay, J., & Smyth, D. (1995). The discovery of structure by multi-stream networks of local processors with contextual guidance. Netw., Comput. Neural Syst., 6, 225–246.

    Article  MATH  Google Scholar 

  • Phillips, W. A., & Silverstein, S. M. (2003). Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. Behav. Brain Sci., 26, 65–138.

    Google Scholar 

  • Phillips, W. A., & Singer, W. (1997). In search of common foundations for cortical computation. Behav. Brain Sci., 20, 657–722.

    Article  Google Scholar 

  • Redlich, A. N. (1993). Redundancy reduction as a strategy for unsupervised learning. Neural Comput., 5, 289–304.

    Article  Google Scholar 

  • Reike, F., Warland, D., de Ruyter van Steninck, R., & Bialek, W. (1997). Spikes. Cambridge: MIT Press.

    Google Scholar 

  • Roopun, A. K., Cunningham, M. O., Racca, C., Alter, K., Traub, R. D., & Whittington, M. A. (2008). Region-specific changes in gamma and beta2 rhythms in NMDA receptor dysfunction models of schizophrenia. Schizophr. Bull., 34, 962–973.

    Article  Google Scholar 

  • Salinas, E., & Sejnowski, T. J. (2001). Gain modulation in the central nervous system: where behavior, neurophysiology, and computation meet. Neuroscientist, 7, 430–440.

    Article  Google Scholar 

  • Sanger, T. D. (1997). A probability interpretation of neural population coding for movement. In P. Morasso & V. Sanguineti (Eds.), Self-organisation, computational maps and motor control (pp. 75–116). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Schwartz, O., Hsu, A., & Dayan, P. (2007). Space and time in visual context. Nat. Rev. Neurosci., 8, 522–535.

    Article  Google Scholar 

  • Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Chicago: University of Illinois Press.

    MATH  Google Scholar 

  • Sherman, S. M., & Guillery, R. W. (1998). On the actions that one nerve cell can have on another: distinguishing ‘drivers’ from ‘modulators’. Proc. Natl. Acad. Sci. USA, 95, 7121–7126.

    Article  Google Scholar 

  • Smyth, D., Phillips, W. A., & Kay, J. (1996). Measures for investigating the contextual modulation of information transmission. Netw., Comput. Neural Syst., 7, 307–316.

    Article  MATH  Google Scholar 

  • Spratling, M. W. (2008). Predictive-coding as a model of biased competition in visual attention. Vis. Res., 48, 1391–1408.

    Article  Google Scholar 

  • Spratling, M. W., & Johnson, M. H. (2006). A feedback model of perceptual learning and categorization. Vis. Cogn., 13, 129–165.

    Article  Google Scholar 

  • Taylor, J. G., & Plumbley, M. D. (1993). Information theory and neural networks. In J. G. Taylor (Ed.), Mathematical approaches to neural networks (pp. 307–340). Elsevier: North Holland.

    Google Scholar 

  • Tiesinga, P., Fellous, J.-M., Salinas, E., Jose, J., & Sejnowski, T. (2005). Inhibitory synchrony as a mechanism for attentional gain modulation. J. Physiol., 98, 296–314 (Paris).

    Google Scholar 

  • Tononi, G., Sporns, O., & Edelman, G. M. (1994). A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc. Natl. Acad. Sci. USA, 91, 5033–5037.

    Article  Google Scholar 

  • Treves, A., & Panzeri, S. (1995). The upward bias in measures of information derived from limited data samples. Neural Comput., 7, 399–407.

    Article  Google Scholar 

  • Tsukada, M., Ishii, N., & Sato, R. (1975). Temporal pattern discrimination of impulse sequences on the computer-simulated nerve cells. Biol. Cybern., 17, 19–28.

    Article  Google Scholar 

  • Tsukada, M., Ishii, N., & Sato, R. (1976). Stochastic automaton models for the temporal pattern discrimination of nerve impulse sequences. Biol. Cybern., 21, 121–130.

    Article  MathSciNet  MATH  Google Scholar 

  • Tsukada, M., Terasawa, M., & Hauske, G. (1983). Temporal pattern discrimination in the cat’s retinal cells and Markov system models. IEEE Trans. Syst. Man Cybern., 13, 953–964.

    MATH  Google Scholar 

  • von der Malsburg, C., Phillips, W. A., & Singer, W. (Eds.) (2010). Strüngmann forum report: Vol. 5. Dynamic coordination in the brain: from neurons to mind. Cambridge: MIT Press.

    Google Scholar 

  • Whittaker, J. (1990). Graphical models in applied statistics. Chichester: Wiley.

    MATH  Google Scholar 

  • Whittington, M. A., & Traub, R. D. (2003). Interneuron diversity series: inhibitory interneurons and network oscillations in vitro. Trends Neurosci., 26, 676–682.

    Article  Google Scholar 

  • Wright, J. J., Robinson, P. A., Rennie, C. J., Gordon, E., Bourke, P. D., Chapman, C. L., Hawthorn, N., Lees, G. J., & Alexander, D. (2001). Toward an integrated continuum model of cerebral dynamics: the cerebral rhythms, synchronous oscillation and cortical stability. Biosystems, 63, 71–88.

    Article  Google Scholar 

  • Zador, A. (1998). Impact of synaptic unreliability on the information transmitted by spiking neurons. J. Neurophysiol., 79, 1219–1229.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jim W. Kay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kay, J.W., Phillips, W.A. Coherent Infomax as a Computational Goal for Neural Systems. Bull Math Biol 73, 344–372 (2011). https://doi.org/10.1007/s11538-010-9564-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9564-x

Keywords

Navigation