Advertisement

Bulletin of Mathematical Biology

, Volume 73, Issue 1, pp 151–180 | Cite as

A Stochastic Version of the Eigen Model

  • Fabio MussoEmail author
Original Article

Abstract

We exhibit a stochastic discrete time model that produces the Eigen model (Naturwissenschaften 58:465–523, 1971) in the deterministic and continuous time limits. The model is based on the competition among individuals differing in terms of fecundity but with the same viability. We explicitly write down the Markov matrix of the discrete time stochastic model in the two species case and compute the master sequence concentration numerically for various values of the total population. We also obtain the master equation of the model and perform a Van Kampen expansion. The results obtained in the two species case are compared with those coming from the Eigen model. Finally, we comment on the range of applicability of the various approaches described, when the number of species is larger than two.

Keywords

Mutation-selection dynamics Error threshold Stochastic model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alves, D., Fontanari, J.F., 1998. Error threshold in finite populations. Phys. Rev. E 57, 7008–7013. CrossRefGoogle Scholar
  2. Bonnaz, D., Koch, A.J., 1998. Stochastic model of evolving populations. J. Phys. A: Math. Gen. 31, 417–429. zbMATHCrossRefMathSciNetGoogle Scholar
  3. Campos, P.R.A., Fontanari, J.F., 1999. Finite-size scaling of the error threshold transition in finite populations. J. Phys. A: Math. Gen. 32, L1–L7. CrossRefGoogle Scholar
  4. Demetrius, L., Schuster, P., Sigmund, K., 1985. Polynucleotide evolution and branching processes. Bull. Math. Biol. 47, 239–262. zbMATHMathSciNetGoogle Scholar
  5. Eigen, M., 1971. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58, 465–523. CrossRefGoogle Scholar
  6. Grimstead, C.M., Snell, J.L., 1997. Introduction to Probability: Second Revised Edition. AMS, Providence. Google Scholar
  7. Jones, B.L., Enns, R.H., Ragnekar, S.S., 1976. On the theory of selection of coupled macromolecular systems. Bull. Math. Biol. 38, 12–28. Google Scholar
  8. Jones, B.L., Leung, H.K., 1981. Stochastic analysis of a nonlinear model for selection of biological macromolecules. Bull. Math. Biol. 43, 665–680. zbMATHMathSciNetGoogle Scholar
  9. McCaskill, J.S., 1984. A stochastic theory of macromolecular evolution. Biol. Cybern. 50, 63–73. zbMATHCrossRefGoogle Scholar
  10. Moran, P.A.P., 1976. Global stability of genetic systems governed by mutation and selection. Math. Proc. Camb. Philos. Soc. 80, 331–336. zbMATHCrossRefGoogle Scholar
  11. Nowak, M., Schuster, P., 1989. Error thresholds of replication in finite populations. Mutation frequencies and the onset of Muller’s ratchet. J. Theor. Biol. 137, 375–395. CrossRefGoogle Scholar
  12. Summers, J., Litwin, S., 2006. Examining the theory of error catastrophe. J. Virol. 80, 20–26. CrossRefGoogle Scholar
  13. Swetina, J., Schuster, P., 1982. Self-replication with errors. A model for polynucleotide replication. Biophys. Chem. 16, 329–345. CrossRefGoogle Scholar
  14. Thompson, C.J., McBride, J.L., 1974. On Eigen’s theory of self-organization of matter and the evolution of macromolecules. Math. Biosci. 21, 127–142. zbMATHCrossRefMathSciNetGoogle Scholar
  15. Van Kampen, N.G., 2007. Stochastic Processes in Physics and Chemistry. North-Holland Personal Library, Amsterdam. Google Scholar
  16. Zhang, Y.-C., 1997. Quasispecies evolution of finite populations. Phys. Rev. E 55, R3817–R3819. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2010

Authors and Affiliations

  1. 1.Departamento de Física, Facultad de CienciasUniversidad de BurgosBurgosSpain

Personalised recommendations