Bulletin of Mathematical Biology

, Volume 73, Issue 1, pp 33–71 | Cite as

Self-tolerance and Autoimmunity in a Regulatory T Cell Model

  • H. K. Alexander
  • L. M. WahlEmail author
Original Article


The class of immunosuppressive lymphocytes known as regulatory T cells (Tregs) has been identified as a key component in preventing autoimmune diseases. Although Tregs have been incorporated previously in mathematical models of autoimmunity, we take a novel approach which emphasizes the importance of professional antigen presenting cells (pAPCs). We examine three possible mechanisms of Treg action (each in isolation) through ordinary differential equation (ODE) models. The immune response against a particular autoantigen is suppressed both by Tregs specific for that antigen and by Tregs of arbitrary specificities, through their action on either maturing or already mature pAPCs or on autoreactive effector T cells. In this deterministic approach, we find that qualitative long-term behaviour is predicted by the basic reproductive ratio R 0 for each system. When R 0<1, only the trivial equilibrium exists and is stable; when R 0>1, this equilibrium loses its stability and a stable non-trivial equilibrium appears. We interpret the absence of self-damaging populations at the trivial equilibrium to imply a state of self-tolerance, and their presence at the non-trivial equilibrium to imply a state of chronic autoimmunity. Irrespective of mechanism, our model predicts that Tregs specific for the autoantigen in question play no role in the system’s qualitative long-term behaviour, but have quantitative effects that could potentially reduce an autoimmune response to sub-clinical levels. Our results also suggest an important role for Tregs of arbitrary specificities in modulating the qualitative outcome. A stochastic treatment of the same model demonstrates that the probability of developing a chronic autoimmune response increases with the initial exposure to self antigen or autoreactive effector T cells. The three different mechanisms we consider, while leading to a number of similar predictions, also exhibit key differences in both transient dynamics (ODE approach) and the probability of chronic autoimmunity (stochastic approach).


Theoretical immunology Autoimmunity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berzins, S.P., Boyd, R.L., Miller, J.F.A.P., 1998. The role of the thymus and recent thymic migrants in the maintenance of the adult peripheral lymphocyte pool. J. Exp. Med. 187, 1839–1848. CrossRefGoogle Scholar
  2. Bluestone, J.A., Tang, Q., 2005. How do CD4+CD25+ regulatory T cells control autoimmunity? Curr. Opin. Immunol. 17, 638–642. CrossRefGoogle Scholar
  3. Borghans, J.A.M., De Boer, R.J., Sercarz, E., Kumar, V., 1998. T cell vaccination in experimental autoimmune encephalomyelitis: a mathematical model. J. Immunol. 161, 1087–1093. Google Scholar
  4. Britton, N.F., 2003. Essential Mathematical Biology. Springer, Berlin. zbMATHGoogle Scholar
  5. Brusko, T.M., Putnam, A.L., Bluestone, J.A., 2008. Human regulatory T cells: roles in autoimmune disease and therapeutic opportunities. Immunol. Rev. 223, 371–390. CrossRefGoogle Scholar
  6. Burroughs, N.J., de Oliveira, B.M.P.M., Pinto, A.A., 2006. Regulatory T cell adjustment of quorum growth thresholds and the control of local immune responses. J. Theor. Biol. 241, 134–141. CrossRefGoogle Scholar
  7. Burroughs, N.J., Oliveira, B.M.P.M., Pinto, A.A., Sequeira, H.J.T., 2008. Sensibility of the quorum growth thresholds controlling local immune responses. Math. Comput. Model. 47, 714–725. zbMATHCrossRefMathSciNetGoogle Scholar
  8. Carneiro, J., Paixão, T., Milutinovic, D., Sousa, J., Leon, K., Gardner, R., Faro, J., 2005. Immunological self-tolerance: lessons from mathematical modeling. J. Comput. Appl. Math. 184, 77–100. zbMATHCrossRefMathSciNetGoogle Scholar
  9. Carneiro, J., Leon, K., Carmalho, I., van den Dool, C., Gardner, R., Oliveira, V., Bergman, M.-L., Sepúlveda, N., Paixão, T., Faro, J., Demengeot, J., 2007. When three is not a crowd: a crossregulation model of the dynamics and repertoire selection of regulatory CD4+ T cells. Immunol. Rev. 216, 48–68. Google Scholar
  10. Cederbom, L., Hall, H., Ivars, F., 2000. CD4+CD25+ regulatory T cells down-regulate co-stimulatory molecules on antigen-presenting cells. Eur. J. Immunol. 30, 1538–1543. CrossRefGoogle Scholar
  11. Chan, C., Lechler, R.I., George, A.J.T., 2004. Tolerance mechanisms and recent progress. Transplant. Proc. 36(Supp. 2S), 561S–569S. CrossRefGoogle Scholar
  12. de Boer, R.J., Hogeweg, P., 1987. Immunological discrimination between self and non-self by precursor depletion and memory accumulation. J. Theor. Biol. 124, 343–369. CrossRefGoogle Scholar
  13. DeFranco, A.L., Locksley, R.M., Robertson, M., 2007. Immunity: The Immune Response in Infectious and Inflammatory Disease. New Science Press Ltd., London. Google Scholar
  14. DiPaolo, R.J., Brinster, C., Davidson, T.S., Andersson, J., Glass, D., Shevach, E.M., 2007. Autoantigen-specific TGFβ-induced Foxp3+ regulatory T cells prevent autoimmunity by inhibiting dendritic cells from activating autoreactive T cells. J. Immunol. 179, 4685–4693. Google Scholar
  15. Edelstein-Keshet, L., 1988. Mathematical Models in Biology. Random House, New York. zbMATHGoogle Scholar
  16. Fehervari, Z., Sakaguchi, S., 2004. Control of Foxp3+ CD25+CD4+ regulatory T cell activation and function by dendritic cells. Int. Immunol. 16, 1769–1780. CrossRefGoogle Scholar
  17. Field, E.H., Kulhankova, K., Nasr, M.E., 2007. Natural Tregs, CD4+CD25+ inhibitory hybridomas, and their cell contact dependent suppression. Immunol. Res. 39, 62–78. CrossRefGoogle Scholar
  18. Gondek, D.C., Lu, L.-F., Quezada, S.A., Sakaguchi, S., Noelle, R.J., 2005. Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J. Immunol. 174, 1783–1786. Google Scholar
  19. Greenbaum, D., Colangelo, C., Williams, K., Gerstein, M., 2003. Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol. 4, 117. CrossRefGoogle Scholar
  20. Grossman, W.J., Verbsky, J.W., Barchet, W., Colonna, M., Atkinson, J.P., Ley, T.J., 2004. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 21, 589–601. CrossRefGoogle Scholar
  21. Iwami, S., Takeuchi, Y., Miura, Y., Sasaki, T., Kajiwara, T., 2007. Dynamical properties of autoimmune disease models: tolerance, flare-up, dormancy. J. Theor. Biol. 246, 646–659. CrossRefMathSciNetGoogle Scholar
  22. Janeway, C.A., Travers, P., Walport, M., Shlomchik, M.J., 2005. Immunobiology: The Immune System in Health and Disease, 6th edn. Garland, New York. Google Scholar
  23. Kim, P.S., Lee, P.P., Levy, D., 2007. Modeling regulation mechanisms in the immune system. J. Theor. Biol. 246, 33–69. CrossRefMathSciNetGoogle Scholar
  24. Kryczek, I., Wei, S., Zou, L., Zhu, G., Mottram, P., Xu, H., Chen, L., Zou, W., 2006. Cutting edge: induction of B7-H4 on APCs through IL-10: novel suppressive mode for regulatory T cells. J. Immunol. 177, 40–44. Google Scholar
  25. León, K., Peréz, R., Lage, A., Carneiro, J., 2000. Modelling T-cell-mediated suppression dependent on interactions in multicellular conjugates. J. Theor. Biol. 207, 231–254. CrossRefGoogle Scholar
  26. León, K., Peréz, R., Lage, A., Carneiro, J., 2001. Three-cell interactions in T cell-mediated suppression? A mathematical analysis of its quantitative implications. J. Immunol. 166, 5356–5365. Google Scholar
  27. León, K., Lage, A., Carneiro, J., 2003. Tolerance and immunity in a mathematical model of T-cell mediated suppression. J. Theor. Biol. 225, 107–126. CrossRefGoogle Scholar
  28. León, K., Faro, J., Lage, A., Carneiro, J., 2004. Inverse correlation between the incidences of autoimmune disease and infection predicted by a model of T cell mediated tolerance. J. Autoimmun. 22, 31–42. CrossRefGoogle Scholar
  29. Mahaffy, J.M., Edelstein-Keshet, L., 2007. Modeling cyclic waves of circulating T cells in autoimmune diabetes. SIAM J. Appl. Math. 67, 915–937. zbMATHCrossRefMathSciNetGoogle Scholar
  30. Male, D., Brostoff, J., Roth, D.B., Roitt, I., 2006. Immunology, 7th edn. Elsevier, Amsterdam. Google Scholar
  31. Misra, N., Bayry, J., Lacroix-Desmazes, S., Kazatchkine, M.D., Kaveri, S.V., 2004. Cutting edge: human CD4+CD25+ T cells restrain the maturation and antigen-presenting function of dendritic cells. J. Immunol. 172, 4676–4680. Google Scholar
  32. Miyara, M., Sakaguchi, S., 2007. Natural regulatory T cells: mechanisms of suppression. TRENDS Mol. Med. 13, 108–116. CrossRefGoogle Scholar
  33. Moon, J.J., Chu, H.H., Pepper, M., McSorly, S.J., Jameson, S.C., Kedl, R.M., Jenkins, M.K., 2007. Naive CD4+ T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 27, 203–213. CrossRefGoogle Scholar
  34. Mottet, C., Uhlig, H.H., Powrie, F., 2003. Cutting edge: cure of colitis by CD4+CD25+ regulatory T cells. J. Immunol. 170, 3939–3943. Google Scholar
  35. Murray, J.D., 1989. Mathematical Biology. Springer, Berlin. zbMATHGoogle Scholar
  36. Piccirillo, C.A., Shevach, E.M., 2004. Naturally-occurring CD4+CD25+ immunoregulatory T cells: central players in the arena of peripheral tolerance. Semin. Immunol. 16, 81–88. CrossRefGoogle Scholar
  37. Sahai, B., 2008. Private communication. March 2008. Google Scholar
  38. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M., Toda, M., 1995. Immunological self-tolerance maintained by activated T-cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164. Google Scholar
  39. Scheffold, A., Hühn, J., Höfer, T., 2005. Regulation of CD4+CD25+ regulatory T cell activity: it takes (IL-)two to tango. Eur. J. Immunol. 35, 1336–1341. CrossRefGoogle Scholar
  40. Scheffold, A., Murphy, K.M., Höfer, T., 2007. Competition for cytokines: Treg cells take all. Nat. Immunol. 8, 1285–1287. CrossRefGoogle Scholar
  41. Takahashi, T., Kuniyasu, Y., Toda, M., Sakaguchi, N., Itoh, M., Iwata, M., Shimizu, J., Sakaguchi, S., 1998. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol. 10, 1969–1980. CrossRefGoogle Scholar
  42. Tang, Q.Z., Adams, J.Y., Tooley, A.J., Bi, M.Y., Fife, B.T., Serra, P., Santamaria, P., Locksley, R.M., Krummel, M.F., Bluestone, J.A., 2006. Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat. Immunol. 7, 83–92. CrossRefGoogle Scholar
  43. Toda, A., Piccirillo, C.A., 2006. Development and function of naturally occurring CD4+CD25+ regulatory T cells. J. Leukoc. Biol. 80, 458–470. CrossRefGoogle Scholar
  44. Wing, K., Fehervari, Z., Sakaguchi, S., 2006. Emerging possibilities in the development and function of regulatory T cells. Int. Immunol. 18, 991–1000. CrossRefGoogle Scholar
  45. Yamazaki, S., Iyoda, T., Tarbell, K., Olson, K., Velinzon, K., Inaba, K., Steinman, R.M., 2003. Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen-processing dendritic cells. J. Exp. Med. 198, 235–247. CrossRefGoogle Scholar
  46. Yamazaki, S., Inaba, K., Tarbell, K.V., Steinman, R.M., 2006. Dendritic cells expand antigen-specific Foxp3+CD25+CD4+ regulatory T cells including suppressors of alloreactivity. Immunol. Rev. 212, 314–329. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2010

Authors and Affiliations

  1. 1.Department of Applied MathematicsUniversity of Western OntarioLondonCanada

Personalised recommendations