Robustness of Phylogenetic Inference Based on Minimum Evolution

Abstract

Minimum evolution is the guiding principle of an important class of distance-based phylogeny reconstruction methods, including neighbor-joining (NJ), which is the most cited tree inference algorithm to date. The minimum evolution principle involves searching for the tree with minimum length, where the length is estimated using various least-squares criteria. Since evolutionary distances cannot be known precisely but only estimated, it is important to investigate the robustness of phylogenetic reconstruction to imprecise estimates for these distances. The safety radius is a measure of this robustness: it consists of the maximum relative deviation that the input distances can have from the correct distances, without compromising the reconstruction of the correct tree structure. Answering some open questions, we here derive the safety radius of two popular minimum evolution criteria: balanced minimum evolution (BME) and minimum evolution based on ordinary least squares (OLS + ME). Whereas BME has a radius of \(\frac{1}{2}\), which is the best achievable, OLS + ME has a radius tending to 0 as the number of taxa increases. This difference may explain the gap in reconstruction accuracy observed in practice between OLS + ME and BME (which forms the basis of popular programs such as NJ and FastME).

This is a preview of subscription content, log in to check access.

References

  1. Atteson, K., 1999. The performance of neighbor-joining methods of phylogenetic reconstruction. Algorithmica 25, 251–278.

    MATH  Article  MathSciNet  Google Scholar 

  2. Bandelt, H.J., Dress, A.W., 1992. Split decomposition: a new and useful approach to phylogenetic analysis of distance data. Mol. Phylogenet. Evol. 1(3), 242–252.

    Article  Google Scholar 

  3. Bordewich, M., Gascuel, O., Huber, K., Moulton, V., 2009. Consistency of topological moves based on the balanced minimum evolution principle of phylogenetic inference. IEEE/ACM Trans. Comput. Biol. Bioinf. 6, 110–117.

    Article  Google Scholar 

  4. Bulmer, M., 1991. Use of the method of generalized least squares in reconstructing phylogenies from sequence data. Mol. Biol. Evol. 8(6), 868.

    Google Scholar 

  5. Buneman, P., 1971. The recovery of trees from measures of dissimilarity. In: Hodson, F. (Ed.), Mathematics in the Archaeological and Historical Sciences, pp. 387–395. Edinburgh University Press, Edinburgh.

    Google Scholar 

  6. Cavalli-Sforza, L.L., Edwards, A.W.F., 1964. Analysis of human evolution. In: Proceedings 11th International Congress of Genetics, vol. 3, pp. 923–933.

  7. Cavalli-Sforza, L.L., Edwards, A.W.F., 1967. Phylogenetic analysis: models and estimation procedures. Am. J. Hum. Genet. 19(3 part 1), 233–257.

    Google Scholar 

  8. Desper, R., Gascuel, O., 2002. Fast and accurate phylogeny reconstruction algorithms based on the minimum-evolution principle. J. Comput. Biol. 9, 687–705.

    Article  Google Scholar 

  9. Desper, R., Gascuel, O., 2004. Theoretical foundation of the balanced minimum evolution method of phylogenetic inference and its relationship to weighted least-squares tree fitting. Mol. Biol. Evol. 21, 587–598.

    Article  Google Scholar 

  10. Desper, R., Gascuel, O., 2005. The minimum evolution distance-based approach to phylogenetic inference. In: Gascuel, O. (Ed.), Mathematics of Evolution & Phylogeny, pp. 1–32. Oxford University Press, Oxford.

    Google Scholar 

  11. Gascuel, O., 2000. On the optimization principle in phylogenetic analysis and the minimum-evolution criterion. Mol. Biol. Evol. 17, 401–405.

    MathSciNet  Google Scholar 

  12. Gascuel, O., McKenzie, A., 2004. Performance analysis of hierarchical clustering algorithms. J. Classif. 21(1), 3–18.

    MATH  Article  MathSciNet  Google Scholar 

  13. Gascuel, O., Steel, M., 2006. Neighbor-joining revealed. Mol. Biol. Evol. 23, 1997–2000.

    Article  Google Scholar 

  14. Gascuel, O., Bryant, D., Denis, F., 2001. Strengths and limitations of the minimum evolution principle. Syst. Biol. 50, 621–627.

    Article  Google Scholar 

  15. Kidd, K.K., Sgaramella-Zonta, L.A., 1971. Phylogenetic analysis: concepts and methods. Am. J. Hum. Genet. 23, 235–252.

    Google Scholar 

  16. Kumar, S., 1996. A stepwise algorithm for finding minimum evolution trees. Mol. Biol. Evol. 13, 584–593.

    Google Scholar 

  17. Mihaescu, R., Pachter, L., 2008. Combinatorics of least squares trees. Proc. Natl. Acad. Sci. USA 105, 13206–13211.

    Article  MathSciNet  Google Scholar 

  18. Nei, M., Kumar, S., 2000. Molecular Evolution and Phylogenetics. Oxford University Press, Oxford.

    Google Scholar 

  19. Pauplin, Y., 2000. Direct calculation of a tree length using a distance matrix. J. Mol. Evol. 51, 41–47.

    Google Scholar 

  20. Rzhetsky, A., Nei, M., 1992. A simple method for estimating and testing minimum-evolution trees. Mol. Biol. Evol. 9, 945–967.

    Google Scholar 

  21. Rzhetsky, A., Nei, M., 1993. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol. Biol. Evol. 10, 1073–1095.

    Google Scholar 

  22. Saitou, N., Imanishi, T., 1989. Relative efficiencies of the Fitch–Margoliash, maximum-parsimony, maximum-likelihood, minimum-evolution, and neighbor-joining methods of phylogenetic tree construction in obtaining the correct tree. Mol. Biol. Evol. 6, 514–525.

    Google Scholar 

  23. Saitou, N., Nei, M., 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    Google Scholar 

  24. Semple, C., Steel, M., 2004. Cyclic permutations and evolutionary trees. Adv. Appl. Math. 32, 669–680.

    MATH  Article  MathSciNet  Google Scholar 

  25. Swofford, D.L., Olsen, G.J., Waddell, P.J., Hillis, D.M., 1996. Phylogenetic inference. In: Hillis, D., Moritz, C., Mable, B. (Eds.), Molecular Systematics, pp. 407–514. Sinauer, Sunderland.

    Google Scholar 

  26. Vinh, L.S., von Haeseler, A., 2005. Shortest triplet clustering: reconstructing large phylogenies using representative sets. BMC Bioinf. 6, 92.

    Article  Google Scholar 

  27. Willson, S.J., 2005a. Consistent formulas for estimating the total lengths of trees. Discrete Appl. Math. 148(3), 214–239.

    MATH  Article  MathSciNet  Google Scholar 

  28. Willson, S.J., 2005b. Minimum evolution using ordinary least-squares is less robust than neighbor-joining. Bull. Math. Biol. 67(2), 261–279.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fabio Pardi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pardi, F., Guillemot, S. & Gascuel, O. Robustness of Phylogenetic Inference Based on Minimum Evolution. Bull. Math. Biol. 72, 1820–1839 (2010). https://doi.org/10.1007/s11538-010-9510-y

Download citation

Keywords

  • Phylogenetics
  • Distance methods
  • Minimum evolution
  • Least squares
  • Safety radius