Modelling and Analysis of Planar Cell Polarity

Abstract

Planar cell polarity (PCP) occurs in the epithelia of many animals and can lead to the alignment of hairs, bristles, and feathers. Here, we present two approaches to modelling this phenomenon. The aim is to discover the basic mechanisms that drive PCP, while keeping the models mathematically tractable. We present a feedback and diffusion model, in which adjacent cell sides of neighbouring cells are coupled by a negative feedback loop and diffusion acts within the cell. This approach can give rise to polarity, but also to period two patterns. Polarisation arises via an instability provided a sufficiently strong feedback and sufficiently weak diffusion. Moreover, we discuss a conservative model in which proteins within a cell are redistributed depending on the amount of proteins in the neighbouring cells, coupled with intracellular diffusion. In this case, polarity can arise from weakly polarised initial conditions or via a wave provided the diffusion is weak enough. Both models can overcome small anomalies in the initial conditions. Furthermore, the range of the effects of groups of cells with different properties than the surrounding cells depends on the strength of the initial global cue and the intracellular diffusion.

This is a preview of subscription content, access via your institution.

References

  1. Adler, P.N., 2002. Planar signaling and morphogenesis in Drosophila. Dev. Cell 2, 525–535.

    Article  Google Scholar 

  2. Adler, P.N., Krasnow, R.E., Liu, J., 1997. Tissue polarity points from cells that have higher frizzled levels towards cells that have lower frizzled levels. Curr. Biol. 7, 940–949.

    Article  Google Scholar 

  3. Amonlirdviman, K., Khare, N.A., Tree, D.R.P., Chen, W.-S., Axelrod, J.D., Tomlin, C.J., 2005. Mathematical modeling of planar cell polarity to understand domineering nonautonomy. Science 307, 423–426.

    Article  Google Scholar 

  4. Belle, A., Tanay, A., Bitincka, L., Shamir, R., O’Shea, E., 2006. Quantification of protein half-lives in the budding yeast proteome. Proc. Natl. Acad. Sci. USA, 103, 13004–13009.

    Article  Google Scholar 

  5. Chen, W.-S., Antic, D., Matis, M., Logan, C.Y., Povelones, M., Abderson, G.A., Nusse, R., Axelrod, J.D., 2008. Asymmetric homotypic interactions of the atypical cadherin flamingo mediate intercellular polarity signaling. Cell 133, 1093–1105.

    Article  Google Scholar 

  6. Collier, J.R., Monk, N.A.M., Maini, P.K., Lewis, J.H., 1996. Pattern formation by lateral inhibition with feedback: A mathematical model of Delta-Notch intercellular signalling. J. Theor. Biol. 183, 429–446.

    Article  Google Scholar 

  7. Elmer, C.E., Van Vleck, E.S., 1999. Analysis and computation of travelling wave solutions of bistable differential-difference equations. Nonlinearity 12, 771–798.

    MATH  Article  MathSciNet  Google Scholar 

  8. Gagliardi, M., Piddini, E., Vincent, J.-P., 2008. Endocytosis: A positive or a negative influence on Wnt signalling? Traffic 9, 1–9.

    Article  Google Scholar 

  9. Kacmarczyk, T., Craddock, E.M., 2000. Cell size is a factor in body size variation among Hawaiian and nonHawaiian species of Drosophila. Drosoph. Inf. Serv. 83, 144–148.

    Google Scholar 

  10. Keener, J.P., 1987. Propagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math. 47, 556–572.

    MATH  Article  MathSciNet  Google Scholar 

  11. Kholodenko, B.N., Hoek, J.B., Westerhoff, H.V., 2000. Why cytoplasmic signalling proteins should be recruited to cell membranes. Cell Biol. 10, 173–178.

    Google Scholar 

  12. Le Garrec, J.-F., Kerszberg, M., 2008. Modeling polarity buildup and cell fate decision in the fly eye: Insight into the connection between the PCP and Notch pathways. Dev. Genes Evol. 218, 413–426.

    Article  Google Scholar 

  13. Le Garrec, J.-F., Lopez, P., Kerszberg, M., 2006. Establishment and maintenance of planar epithelial cell polarity by asymmetric cadherin bridges: A computer model. Dev. Dyn. 235, 235–246.

    Article  Google Scholar 

  14. Murray, J.D., 1989. Mathematical Biology. Springer, Berlin.

    Google Scholar 

  15. Owen, M.R., 2002. Waves and propagation failure in discrete space models with nonlinear coupling and feedback. Physica D 173, 59–76.

    MATH  Article  MathSciNet  Google Scholar 

  16. Plahte, E., Øyehaug, L., 2007. Pattern-generating travelling waves in a discrete multicellular system with lateral inhibition. Physica D 226, 117–128.

    MATH  MathSciNet  Google Scholar 

  17. Raffard, R.L., Amonlirdviman, K., Axelrod, J.D., Tomlin, C.J., 2008. An adjoint-based parameter identification algorithm applied to planar cell polarity signaling. IEEE Trans. Automat. Contr. 53 (Special Issue on Systems Biology), 109–121. DOI: 10.1109/TAC.2007.911362.

    Article  MathSciNet  Google Scholar 

  18. Shimada, Y., Yonemura, S., Ohkura, H., Strutt, D., Uemura, T., 2006. Polarized transport of Frizzled along the planar microtubule arrays in Drosophila wing epithelium. Dev. Cell 10(4), 209–222.

    Article  Google Scholar 

  19. Simons, M., Mlodzik, M., 2008. Planar cell polarity signaling: From fly development to human disease. Annu. Rev. Genet. 42, 517–540.

    Article  Google Scholar 

  20. Strutt, D., 2002. The asymmetric subcellular localisation of components of the planar polarity pathway. Semim. Cell Dev. Biol. 13, 225–231.

    Article  Google Scholar 

  21. Strutt, D., Strutt, H., 2007. Differential activities of the core planar polarity proteins during Drosophila wing patterning. Dev. Biol. 302, 181–194.

    Article  Google Scholar 

  22. Vinson, C.R., Adler, P.N., 1987. Directional non-cell autonomy and the transmission of polarity information by the frizzled gene of Drosophila. Nature 329, 549–551.

    Article  Google Scholar 

  23. Wu, J., Mlodzik, M., 2008. The frizzled extracellular domain is a ligand for Van Gogh/Stbm during nonautonomous planar cell polarity signaling. Dev. Cell 15, 462–469.

    Article  Google Scholar 

  24. Xu, T., Rubin, G.M., 1993. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117, 1223–1237.

    Google Scholar 

  25. Zallen, J.A., 2007. Planar polarity and tissue morphogenesis. Cell 129, 1051–1063.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Schamberg.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schamberg, S., Houston, P., Monk, N.A.M. et al. Modelling and Analysis of Planar Cell Polarity. Bull. Math. Biol. 72, 645–680 (2010). https://doi.org/10.1007/s11538-009-9464-0

Download citation

Keywords

  • Drosophila
  • Reaction–diffusion equations
  • Frizzled