Irreducibility in RNA Structures

Abstract

In this paper, we study irreducibility in RNA structures. By RNA structure, we mean RNA secondary as well as RNA pseudoknot structures as abstract contact structures. We give an analysis contrasting random and minimum free energy (mfe) configurations and secondary versus pseudoknots structures. In the process, we compute various distributions: the numbers of irreducible substructures and their locations and sizes, parameterized in terms of the maximal number of mutually crossing arcs, k−1, and the minimal size of stacks σ. In particular, we analyze the size of the largest irreducible substructure for random and mfe structures, which is the key factor for the folding time of mfe configurations. We show that the largest irreducible substructure is typically unique and contains almost all nucleotides.

This is a preview of subscription content, access via your institution.

References

  1. Cameron, N.T., Shapiro, L., 2003. Random walks, trees and extensions of Riordan group techniques. In: Annual Joint Mathematics Meetings, Baltimore, MD, US.

  2. Hofacker, I.L., Fontana, W., Stadler, P.F., Bonhoeffer, L.S., Tavker, M., Schuster, P., 1994. Fast folding and comparison of RNA secondary structures, 125, 167–188. http://www.tbi.univie.ac.at/~ivo/RNA.

  3. Howell, J.A., Smith, T.F., Waterman, M.S., 1980. Computation of generating functions for biological molecules. SIAM J. Appl. Math. 39, 119–133.

    MATH  Article  MathSciNet  Google Scholar 

  4. Huang, F.W.D., Li, L.Y.M., Reidys, C.M., 2009a. Sequence-structure relations of pseudoknot RNA. BMC Bioinformatics 10(S1), S39.

    Article  Google Scholar 

  5. Huang, F.W.D., Peng, W.W.J., Reidys, C.M., 2009b. Folding 3-noncrossing RNA pseudoknot structures. J. Comput. Biol. (to appear).

  6. Jin, E.Y., Reidys, C.M., 2009. Combinatorial design of pseudoknot RNA. Adv. Appl. Math. 42, 135–151.

    MATH  Article  MathSciNet  Google Scholar 

  7. Jin, E.Y., Reidys, C.M., 2010. On the decomposition of k-noncrossing RNA structures. Adv. Appl. Math. 44, 53–70.

    MATH  Article  MathSciNet  Google Scholar 

  8. Jin, E.Y., Qin, J., Reidys, C.M., 2008. Combinatorics of RNA structures with pseudoknots. Bull. Math. Biol. 70(1), 45–67.

    MATH  Article  MathSciNet  Google Scholar 

  9. Konings, D.A.M., Gutell, R.R., 1995. A comparison of thermodynamic foldings with comparatively derived structures of 16S and 16S-like rRNAs. RNA 1, 559–574.

    Google Scholar 

  10. Loria, A., Pan, T., 1996. Domain structure of the ribozyme from eubacterial ribonuclease P. RNA 2, 551–563.

    Google Scholar 

  11. Ma, G., Reidys, C.M., 2008. Canonical RNA pseudoknot structures. J. Comput. Biol. 15(10), 1257–1273.

    Article  MathSciNet  Google Scholar 

  12. Penner, R.C., Waterman, M.S., 1993. Spaces of RNA secondary structures. Adv. Math. 101, 31–49.

    MATH  Article  MathSciNet  Google Scholar 

  13. Searls, D.B., 1999. Formal Language Theory and Biological Macromolecules, Series in Discr. Math. and Theor. Comput. Sci., vol. 47, pp. 117–140.

  14. Tuerk, C., MacDougal, S., Gold, L., 1992. RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase. Proc. Natl. Acad. Sci. USA 89, 6988–6992.

    Article  Google Scholar 

  15. Waterman, M.S., 1979. Combinatorics of RNA hairpins and cloverleafs. Stud. Appl. Math. 60, 91–96.

    MathSciNet  Google Scholar 

  16. Waterman, M.S., 1978. Secondary structure of single-stranded nucleic acids. Adv. Math. I (Suppl.) 1, 167–212.

    MathSciNet  Google Scholar 

  17. Waterman, M.S., Schmitt, W.R., 1994. Linear trees and RNA secondary structure. Discrete Appl. Math. 51, 317–323.

    MATH  Article  MathSciNet  Google Scholar 

  18. Westhof, E., Jaeger, L., 1992. RNA pseudoknots. Curr. Opin. Struct. Biol. 2, 327–333.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christian M. Reidys.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jin, E.Y., Reidys, C.M. Irreducibility in RNA Structures. Bull. Math. Biol. 72, 375–399 (2010). https://doi.org/10.1007/s11538-009-9451-5

Download citation

  • Pseudoknot
  • Singularity analysis
  • k-noncrossing σ-canonical diagram
  • k-noncrossing σ-canonical RNA structure
  • Irreducible substructure
  • Return
  • Largest irreducible substructure