Goodness of Fit of Probability Distributions for Sightings as Species Approach Extinction

  • Richard M. Vogel
  • Jonathan R. M. Hosking
  • Chris S. Elphick
  • David L. Roberts
  • J. Michael Reed
Original Article

Abstract

Estimating the probability that a species is extinct and the timing of extinctions is useful in biological fields ranging from paleoecology to conservation biology. Various statistical methods have been introduced to infer the time of extinction and extinction probability from a series of individual sightings. There is little evidence, however, as to which of these models provide adequate fit to actual sighting records. We use L-moment diagrams and probability plot correlation coefficient (PPCC) hypothesis tests to evaluate the goodness of fit of various probabilistic models to sighting data collected for a set of North American and Hawaiian bird populations that have either gone extinct, or are suspected of having gone extinct, during the past 150 years. For our data, the uniform, truncated exponential, and generalized Pareto models performed moderately well, but the Weibull model performed poorly. Of the acceptable models, the uniform distribution performed best based on PPCC goodness of fit comparisons and sequential Bonferroni-type tests. Further analyses using field significance tests suggest that although the uniform distribution is the best of those considered, additional work remains to evaluate the truncated exponential model more fully. The methods we present here provide a framework for evaluating subsequent models.

Keywords

L-moments Extinct birds Field significance test Biological records Extirpation 

References

  1. Beg, M.A., 1982. Optimal tests and estimators for truncated exponential families. Metrika 29, 103–13. MATHCrossRefMathSciNetGoogle Scholar
  2. Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B Met. 57, 289–00. MATHMathSciNetGoogle Scholar
  3. Beirlant, J., Goegebeur, Y., Segars, J., Teugels, J., 2005. Statistics of Extremes: Theory and Applications. Wiley, Hoboken. Google Scholar
  4. Burgman, M.A., Grimson, R.C., Ferson, S., 1995. Inferring threat from scientific collections. Conserv. Biol. 9, 923–28. CrossRefGoogle Scholar
  5. Casella, G., Berger, R., 1990. Statistical Inference. Wadsworth and Brooks/Cole, Pacific Grove. MATHGoogle Scholar
  6. Chowdhury, J.U., Stedinger, J.R., Lu, L.-H., 1991. Goodness-of-fit tests for regional generalized extreme value flood distributions. Water Resour. Res. 27, 1765–776. CrossRefGoogle Scholar
  7. Collar, N.J., 1998. Extinction by assumption; or the Romeo error on Cebu. Oryx 32, 239–44. CrossRefGoogle Scholar
  8. David, H.A., Nagaraja, H.N., 2003. Order Statistics, 3rd edn. Wiley, Hoboken. MATHGoogle Scholar
  9. Douglas, E.M., Vogel, R.M., 2006. The probabilistic behavior of the flood of record in the United States. J. Hydrol. Eng. 11, 482–88. CrossRefGoogle Scholar
  10. Douglas, E.M., Vogel, R.M., Kroll, C.N., 2000. Trends in flood and low flows in the United States. J. Hydrol. 240, 90–05. CrossRefGoogle Scholar
  11. Filliben, J.J., 1975. The probability plot correlation coefficient test for normality. Technometrics 17, 111–17. MATHCrossRefGoogle Scholar
  12. Heo, J.-H., Kho, Y.W., Shin, H., Kim, S., Kim, T., 2008. Regression equations of probability plot correlation coefficient test statistics from several probability distributions. J. Hydrol. 335(1–4), 1–5. CrossRefGoogle Scholar
  13. Hosking, J.R.M., 1990. L-moments: Analysis and estimation of distributions using linear combinations or order statistics. J. R. Stat. Soc. B Met. 52, 105–24. MATHMathSciNetGoogle Scholar
  14. Hosking, J.R.M., Wallis, J.R., 1987. Parameter and quantile estimation for the generalized Pareto distribution. Technometrics 9, 339–49. CrossRefMathSciNetGoogle Scholar
  15. Hosking, J.R.M., Wallis, J.R., 1997. Regional Frequency Analysis: An Approach Based on L-moments. Cambridge Univ. Press, New York. Google Scholar
  16. Kottegoda, N.T., Rosso, R., 1997. Statistics, Probability, and Environmental Engineers. McGraw-Hill, New York. Google Scholar
  17. Livezey, R.E., Chen, W.Y., 1983. Statistical field significance: Monte Carlo techniques. Mon. Weather Rev. 111, 46–9. CrossRefGoogle Scholar
  18. Marshall, C.R., 1995. Distinguishing between sudden and gradual extinctions in the fossil record: Predicting the position of the Cretaceous-Tertiary iridium anomaly using the ammonite fossil record on Seymour Island, Antarctica. Geology. 23, 731–34. CrossRefGoogle Scholar
  19. Marshall, C.R., Ward, P.D., 1996. Sudden and gradual molluscan extinctions in the latest Cretaceous of western European Tethys. Science 274, 1360–363 CrossRefGoogle Scholar
  20. McCarthy, M.A., 1998. Identifying declining and threatened species with museum data. Biol. Conserv. 83, 9–7. CrossRefMathSciNetGoogle Scholar
  21. Reed, J.M., 1996. Using statistical probability to increase confidence of inferring species extinction. Conserv. Biol. 10, 1283–285. CrossRefGoogle Scholar
  22. Rice, W.R., 1989. Analyzing tables of statistical tests. Evolution 43, 223–25. CrossRefGoogle Scholar
  23. Roberts, D.L., Solow, A.R., 2003. When did the Dodo become extinct? Nature 426, 245. CrossRefGoogle Scholar
  24. Simes, R.J., 1986. An improved Bonferroni procedure for multiple tests of significance. Biometrika 73, 751–54. MATHCrossRefMathSciNetGoogle Scholar
  25. Solow, A.R., 1993a. Inferring extinction from sighting data. Ecology 74, 962–64. CrossRefGoogle Scholar
  26. Solow, A.R., 1993b. Inferring extinction in a declining population. J. Math. Biol. 32, 79–2. MATHCrossRefGoogle Scholar
  27. Solow, A.R., 2005. Inferring extinction from a sighting record. Math. Biosci. 195, 47–5. MATHCrossRefMathSciNetGoogle Scholar
  28. Solow, A.R., Roberts, D.L., Robbirt, K.M., 2006. On the Pleistocene extinctions of Alaskan mammoths and horses. Proc. Natl. Acad. Sci. USA 103, 7351–353. CrossRefGoogle Scholar
  29. Solow, A., Seymour, A., Beet, A., Harris, S., 2008. The untamed shrew: On the termination of an eradication programme for an introduced species. J. Appl. Ecol. 45, 424–27. CrossRefGoogle Scholar
  30. Springer, M.S., 1990. The effect of random range truncations on patterns of evolution in the fossil record. Paleobiology 16, 512–20. Google Scholar
  31. Stedinger, J.R., Vogel, R.M., Foufoula-Georgiou, E., 1993. Frequency analysis of extreme events. In: Maidment, D.R. (Ed.), Handbook of Hydrology, pp. 18.1–8.68. McGraw-Hill, New York. Google Scholar
  32. Thompson, E.M., Baise, L.G., Vogel, R.M., 2007. A global index earthquake approach to probabilistic assessment of extremes. J. Geophys. Res. 112, B06314. doi:10.1029/2006JB004543. CrossRefGoogle Scholar
  33. Ventura, V., Paciorek, C.J., Risbey, J.S., 2004. Controlling the proportion of falsely rejected hypotheses when conducting multiple tests with climatological data. J. Climate 17, 4343–356. CrossRefGoogle Scholar
  34. Vogel, R.M., Fennessey, N.M., 1993. L-moment diagrams should replace product-moment diagrams. Water Resour. Res. 29, 1745–752. CrossRefGoogle Scholar
  35. Vogel, R.M., Kroll, C.N., 1989. Low-flow frequency analysis using probability plot correlation coefficients. J. Water Resour. Plan. Manag. 115, 338–57. CrossRefGoogle Scholar
  36. Wang, S.C., Marshall, C.R., 2004. Improved confidence intervals for estimating the position of a mass extinction boundary. Paleobiology 30, 5–8. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2008

Authors and Affiliations

  • Richard M. Vogel
    • 1
  • Jonathan R. M. Hosking
    • 2
  • Chris S. Elphick
    • 3
  • David L. Roberts
    • 4
    • 5
  • J. Michael Reed
    • 6
  1. 1.Department of Civil and Environmental EngineeringTufts UniversityMedfordUSA
  2. 2.IBM Research DivisionThomas J. Watson Research CenterYorktown HeightsUSA
  3. 3.Department of Ecology and Evolutionary Biology, and Center for Conservation and BiodiversityUniversity of ConnecticutStorrsUSA
  4. 4.Museum of Comparative ZoologyHarvard UniversityCambridgeUSA
  5. 5.Royal Botanic GardensRichmondUK
  6. 6.Department of BiologyTufts UniversityMedfordUSA

Personalised recommendations