Modeling the Population Level Effects of an HIV-1 Vaccine in an Era of Highly Active Antiretroviral Therapy

Original Article


First generation HIV vaccines may have limited ability to prevent infection. Instead, they may delay the onset of AIDS or reduce the infectiousness of vaccinated individuals who become infected. To assess the population level effects of such a vaccine, we formulate a deterministic model for the spread of HIV in a homosexual population in which the use of highly active antiretroviral therapy (HAART) to treat HIV infection is incorporated. The basic reproduction number R 0 is obtained under this model. We then expand the model to include the potential effects of a prophylactic HIV vaccine. The reproduction number R f is derived for a population in which a fraction f of susceptible individuals is vaccinated and continues to benefit from vaccination. We define f * as the minimum vaccination fraction for which R f ≤ 1 and describe situations in which it equals the critical vaccination fraction necessary to eliminate disease. When R 0 is large or an HIV vaccine is only partially effective, the critical vaccination fraction may exceed one. HIV vaccination, however, may still reduce the prevalence of disease if the reduction in infectiousness is at least as great as the reduction in the rate of disease progression. In particular, a vaccine that reduces infectiousness during acute infection may have an important public health impact especially if coupled with counseling to reduce risky behavior.


AIDS Basic reproduction number Epidemic models HAART HIV Vaccines 


  1. Abu-Raddad, L., Boily, M., Self, S., Longini, I. Jr., 2007. Analytic insights into the population level impact of imperfect prophylactic HIV vaccines. J. Acquir. Immune Defic. Syndr. 45(4), 454–67. CrossRefGoogle Scholar
  2. Anderson, R., Hanson, M., 2005. Potential public health impact of imperfect HIV type 1 vaccines. J. Infect. Dis. 191(S1), S85–S96. CrossRefGoogle Scholar
  3. Anderson, R., Swinton, J., Garnett, G., 1995. Potential impact of low efficacy HIV-1 vaccines in populations with high rates of infection. Proc. R. Soc. Lond. Ser. B - Biol. Sci. 261(1361), 147–51. CrossRefGoogle Scholar
  4. Arino, J., Cooke, K., van den Driessche, P., Velasco-Hernandez, J., 2004. An epidemiology model that includes a leaky vaccine with a general waning function. Discrete Contin. Dyn. Syst. Ser. B 4(2), 479–95. MATHCrossRefMathSciNetGoogle Scholar
  5. Babiker, A., Darby, S., De Angelis, D., Ewart, D., Porter, K., 2000. Time from HIV-1 seroconversion to AIDS and death before widespread use of highly active antiretroviral therapy: a collaborative reanalysis. Lancet 355, 1131–137. CrossRefGoogle Scholar
  6. Baggaley, R., Garnett, G., Ferguson, N., 2006. Modelling the impact of antiretroviral use in resource-poor settings. PLoS Med. 3(4), e124. CrossRefGoogle Scholar
  7. Bartlett, J., Lane, H., Anderson, J., Baker, A., Bozzette, S., Carpenter, C., Delaney, M., El-Sadr, L., Fletcher, C. et al., 2006. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. DHHS-Office of AIDS Research Advisory Council. Google Scholar
  8. Blower, S., Bodine, E., Grovit-Ferbas, K., 2005. Predicting the potential public health impact of disease-modifying HIV vaccines in South Africa: the problem of subtypes. Curr. Drug Targets–Infect. Disord. 5, 179–92. CrossRefGoogle Scholar
  9. Blythe, S., Castillo-Chavez, C., 1989. Like-with-like preference and sexual mixing models. Math. Biosci. 96(2), 221–38. MATHCrossRefGoogle Scholar
  10. Burr, C., 1998. Of AIDS and altruism. US News World Rep. 124(13), 60–1. Google Scholar
  11. Cohen, J., 2007. AIDS research: promising AIDS vaccine’s failure leaves field reeling. Science 318(5847), 28–9. CrossRefGoogle Scholar
  12. Davenport, M., Ribeiro, R., Chao, D., Perelson, A., 2004. Predicting the impact of a nonsterilizing vaccine against human immunodeficiency virus. J. Virol. 78(20), 11,340–1,351. CrossRefGoogle Scholar
  13. Deeks, S., 2003. Treatment of antiretroviral-drug-resistant HIV-1 infection. Lancet 362(9400), 2002–011. CrossRefGoogle Scholar
  14. Del Valle, S., Morales Evangelista, A., Cristina Velasco, M., Kribs-Zaleta, C., Hsu Schmitz, S., 2004. Effects of education, vaccination and treatment on HIV transmission in homosexuals with genetic heterogeneity. Math. Biosci. 187(2), 111–33. MATHCrossRefMathSciNetGoogle Scholar
  15. Diekmann, O., Hesterbeck, J., Metz, J., 1990. On the definition and the computation of the basic reproductive rate ratio r 0 in heterogeneous populations. J. Math. Biol. 28, 365–82. MATHCrossRefMathSciNetGoogle Scholar
  16. Dietz, K., 1993. The estimation of the basic reproduction number for infectious diseases. Stat. Methods Med. Res. 2(1), 23–4. CrossRefMathSciNetGoogle Scholar
  17. Dushoff, J., 1996. Incorporating immunological ideas in epidemiological models. J. Theor. Biol. 180(3), 181–87. CrossRefGoogle Scholar
  18. Elbasha, E., Gumel, A., 2006. Theoretical assessment of public health impact of imperfect prophylactic HIV-1 vaccines with therapeutic benefits. Bull. Math. Biol. 68(3), 577–14. CrossRefGoogle Scholar
  19. Gilbert, P., DeGruttola, V., Hudgens, M., Self, S., Hammer, S., Corey, L., 2003. What constitutes efficacy for a human immunodeficiency virus vaccine that ameliorates viremia: issues involving surrogate end points in phase 3 trials. J. Infect. Dis. 188(2), 179–93. CrossRefGoogle Scholar
  20. Goebel, F., 2005. Immune reconstitution inflammatory syndrome (IRIS) another new disease entity following treatment initiation of HIV infection. Infection 33(1), 43–5. CrossRefGoogle Scholar
  21. Gray, R., Wawer, M., Brookmeyer, R., Sewankambo, N., Serwadda, D., Wabwire-Mangen, F., Lutalo, T., Li, X., vanCott, T., Quinn, T., 2001. Probability of HIV-1 transmission per coital act in monogamous, heterosexual, HIV-1-discordant couples in Rakai, Uganda. Lancet 357(9263), 1149–153. CrossRefGoogle Scholar
  22. Gumel, A., McCluskey, C., van den Driessche, P., 2006. Mathematical study of a staged-progression HIV model with imperfect vaccine. Bull. Math. Biol. 68(8), 2105–128. CrossRefMathSciNetGoogle Scholar
  23. Hoyert, D., Kung, H., Smith, B., 2005. Deaths: preliminary data for 2003. Nat. Vital Stat. Rep. 53(15), 1–8. Google Scholar
  24. Hsu Schmitz, S., 2000. Effects of treatment or/and vaccination on HIV transmission in homosexuals with genetic heterogeneity. Math. Biosci. 167(1), 1–8. MATHCrossRefGoogle Scholar
  25. Huang, W., Cooke, K., Castillo-Chavez, C., 1992. Stability and bifurcation for a multiple-group model for the dynamics of HIV/AIDS transmission. SIAM J. Appl. Math. 52, 835–54. MATHCrossRefMathSciNetGoogle Scholar
  26. Hyman, J., Li, J., Stanley, E., 1999. The differential infectivity and staged progression models for the transmission of HIV. Math. Biosci. 155(2), 77–09. MATHCrossRefGoogle Scholar
  27. IAVI, 2007. International AIDS Vaccine Initiative vaccine database.
  28. Jacobson, L., Phair, J., Yamashita, T., 2004. Update on the virologic and immunologic response to highly active antiretroviral therapy. Curr. Infect. Dis. Rep. 6(4), 325–32. CrossRefGoogle Scholar
  29. Jacquez, J., Simon, C., Koopman, J., Sattenspiel, L., Perry, T., 1988. Modeling and analyzing HIV transmission: the effect of contact patterns. Math. Biosci. 92(2), 119–99. MATHCrossRefMathSciNetGoogle Scholar
  30. Katz, M., Schwarcz, S., Kellogg, T., Klausner, J., Dilley, J., Gibson, S., McFarland, W., 2002. Impact of highly active antiretroviral treatment on HIV seroincidence among men who have sex with men: San Francisco. Am. J. Public Heath 92, 388–94. CrossRefGoogle Scholar
  31. Kgosimore, M., Lungu, E., 2004. The effects of vaccination and treatment on the spread of HIV/AIDS. J. Biol. Syst. 12(4), 399–17. MATHCrossRefGoogle Scholar
  32. King, J. Jr., Justice, A., Roberts, M., Chang, C., Fusco, J., 2003. Long-term HIV/AIDS survival estimation in the highly active antiretroviral therapy era. Med. Decis. Mak. 23(1), 9–0. CrossRefGoogle Scholar
  33. Kretzschmar, M., Dietz, K., 1998. The effect of pair formation and variable infectivity on the spread of an infection without recovery. Math. Biosci. 148(1), 83–13. MATHCrossRefMathSciNetGoogle Scholar
  34. Kribs-Zaleta, C., Velasco-Hernández, J., 2000. A simple vaccination model with multiple endemic states. Math. Biosci. 164(2), 183–01. MATHCrossRefGoogle Scholar
  35. Lin, X., Hethcote, H., Van den Driessche, P., 1993. An epidemiological model for HIV/AIDS with proportional recruitment. Math. Biosci. 118(2), 181–5. MATHCrossRefMathSciNetGoogle Scholar
  36. Louie, J., Hsu, L., Osmond, D., Katz, M., Schwarcz, S., 2002. Trends in causes of death among persons with acquired immunodeficiency syndrome in the era of highly active antiretroviral therapy, San Francisco, 1994–998. J. Infect. Dis. 186(7), 1023–027. CrossRefGoogle Scholar
  37. Lyles, R., Munoz, A., Yamashita, T., Bazmi, H., Detels, R., Rinaldo, C., Margolick, J., Phair, J., Mellors, J., 2000. Natural history of human immunodeficiency virus type 1 viremia after seroconversion and proximal to AIDS in a large cohort of homosexual men. J. Infect. Dis. 181(3), 872–80. CrossRefGoogle Scholar
  38. Macey, R., Oster, G., 2000. Berkeley madonna. Version 801. Google Scholar
  39. Massad, E., Coutinho, F., Burattini, M., Lopez, L., Struchiner, C., 2001. Modeling the impact of imperfect HIV vaccines on the incidence of the infection. Math. Comput. Model. 34(3–4), 345–51. MATHCrossRefGoogle Scholar
  40. McCluskey, C., 2003. A model of HIV/AIDS with staged progression and amelioration. Math. Biosci. 181(1), 1–6. MATHCrossRefMathSciNetGoogle Scholar
  41. Montaner, J., Hogg, R., Wood, E., Kerr, T., Tyndall, M., Levy, A., Harrigan, P., 2006. The case for expanding access to highly active antiretroviral therapy to curb the growth of the HIV epidemic. Lancet 368(9534), 531–36. CrossRefGoogle Scholar
  42. Morris, M., Kretzschmar, M., 1997. Concurrent partnerships and the spread of HIV. AIDS 11(5), 641–48. CrossRefGoogle Scholar
  43. Paltiel, A., Weinstein, M., Kimmel, A., Seage, G. III, Losina, E., Zhang, H., Freedberg, K., Walensky, R., 2005. Expanded screening for HIV in the United States—an analysis of cost-effectiveness. N. Engl. J. Med. 352(6), 586–95. CrossRefGoogle Scholar
  44. Pilcher, C., Tien, H., Eron, J. Jr., Vernazza, P., Leu, S., Stewart, P., Goh, L., Cohen, M. , 2004. Brief but efficient: acute HIV infection and the sexual transmission of HIV. J. Infect. Dis. 189(10), 1785–792. CrossRefGoogle Scholar
  45. Pitisuttithum, P., Gilbert, P., Gurwith, M., Heyward, W., Martin, M., van Griensven, F., Hu, D., Tappero, J., Choopanya, K. , 2006. Randomized, double-blind, placebo-controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in Bangkok, Thailand. J. Infect. Dis. 194(12), 1661–671. CrossRefGoogle Scholar
  46. Porco, T., Martin, J., Page-Shafer, K., Cheng, A., Charlebois, E., Grant, R., Osmond, D., 2004. Decline in HIV infectivity following the introduction of highly active antiretroviral therapy. AIDS 18(1), 81–8. CrossRefGoogle Scholar
  47. Quinn, T., Wawer, M., Sewankambo, N., Serwadda, D., Li, C., Wabwire-Mangen, F., Meehan, M., Lutalo, T., Gray, R., 2000. Viral load and heterosexual transmission of human immunodeficiency virus type 1. Rakai project study group. N. Engl. J. Med. 342(13), 921–29. CrossRefGoogle Scholar
  48. Rerks-Ngarm, S., Brown, A., Khamboonruang, C., Thongcharoen, P., Kunasol, P., 2006. HIV/AIDS preventive vaccine’prime-boost’phase III trial: foundations and initial lessons learned from Thailand. AIDS 20(11), 1471–479. CrossRefGoogle Scholar
  49. rgp120 HIV Vaccine Study Group, 2005. Placebo-controlled phase 3 trial of a recombinant glycoprotein 120 vaccine to prevent HIV-1 infection. J. Infect. Dis. 191, 654–65. CrossRefGoogle Scholar
  50. Safan, M., Heesterbeek, H., Dietz, K., 2006. The minimum effort required to eradicate infections in models with backward bifurcation. J. Math. Biol. 53(4), 703–18. MATHCrossRefGoogle Scholar
  51. Sanders, G., Bayoumi, A., Sundaram, V., Bilir, S., Neukermans, C., Rydzak, C., Douglass, L., Lazzeroni, L., Holodniy, M., Owens, D., 2005. Cost-effectiveness of screening for HIV in the era of highly active antiretroviral therapy. N. Engl. J. Med. 352(6), 570–85. CrossRefGoogle Scholar
  52. Sifakis, F., Flynn, C., Metsch, L., LaLota, M., Murrill, C., Koblin, B., Bingham, T., McFarland, W., Raymond, H., Behel, S. , 2005. HIV prevalence, unrecognized infection, and HIV testing among men who have sex with men-five US cities, June 2004–April 2005. Morb. Mortal. Wkly. Rep. 54(24), 597–01. Google Scholar
  53. Smith, P., Rodrigues, L., Fine, P., 1984. Assessment of the protective efficacy of vaccines against common diseases using case-control and cohort studies. Int. J. Epidemiol. 13(1), 87–3. CrossRefGoogle Scholar
  54. Smith, R., Blower, S., 2004. Could disease-modifying HIV vaccines cause population-level perversity? Lancet Infect. Dis. 4(10), 636–39. CrossRefGoogle Scholar
  55. Thiebaut, R., Jacqmin-Gadda, H., Babiker, A., Commenges, D., the Cascade Collaboration, 2005. Joint modelling of bivariate longitudinal data with informative dropout and left censoring, with application to the evolution of CD4+ cell counts and HIV RNA viral load in response to treatment of HIV infection. Stat. Med. 24, 65–2. CrossRefMathSciNetGoogle Scholar
  56. Toth, G., 2000. Survival after introduction of HAART in people with known duration of HIV-1 infection. Lancet 355, 1158–159. CrossRefGoogle Scholar
  57. UNAIDS, 2007.2007 AIDS epidemic update.
  58. van den Driessche, P., Watmough, J., 2002. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180(1–2), 29–8. MATHMathSciNetGoogle Scholar
  59. Vittinghoff, E., Douglas, J., Judson, F., McKirnan, D., MacQueen, K., Buchbinder, S., 1999. Per-contact risk of human immunodeficiency virus transmission between male sexual partners. Am. J. Epidemiol. 150(3), 306–11. Google Scholar
  60. Watkins, D., Burton, D., Kallas, E., Moore, J., Koff, W., 2008. Nonhuman primate models and the failure of the Merck HIV-1 vaccine in humans. Nat. Med. 14(6), 617–21. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2008

Authors and Affiliations

  1. 1.American UniversityWashingtonUSA
  2. 2.Framingham State CollegeFraminghamUSA

Personalised recommendations