Skip to main content

First Passage Time Analysis of Animal Movement and Insights into the Functional Response

Abstract

Movement plays a role in structuring the interactions between individuals, their environment, and other species. Although movement models coupled with empirical data are widely used to study animal distribution, they have seldom been used to study search time. This paper proposes first passage time as a novel approach for understanding the effect of the landscape on animal movement and search time. In the context of animal movement, first passage time is the time taken for an animal to reach a specified site for the first time. We synthesize current first passage time theory and derive a general first passage time equation for animal movement. This equation is related to the Fokker–Planck equation, which is used to describe the distribution of animals in the landscape. We illustrate the first passage time method by analyzing the effect of territorial behavior on the time required for a red fox to locate prey throughout its home range. Using first passage time to compute search times, we consider the effect of two different searching modes on a functional response. We show that random searching leads to a Holling type III functional response. First passage time analysis provides a new tool for studying how animal movement may influence ecological processes.

This is a preview of subscription content, access via your institution.

References

  • Belisle, M., 2005. Measuring landscape connectivity: the challenge of behavioral landscape ecology. Ecology 86, 1988–1995.

    Article  Google Scholar 

  • Bell, W., 1991. Searching Behaviour. Animal Behaviour Series. Chapman and Hall, London.

    Google Scholar 

  • Benichou, O., Coppey, M., Moreau, M., Suet, P.-H., Voituriez, R., 2005. Optimal search strategies for hidden targets. Phys. Rev. Lett. 94, 198101.

    Article  Google Scholar 

  • Berg, H., 1993. Random Walks in Biology. Princeton University Press, Princeton.

    Google Scholar 

  • Burt, W., 1943. Territoriality and Home Range Concepts as Applied to Mammals. J. Mammal. 24, 346–352.

    Article  Google Scholar 

  • Condamine, S., Benichou, O., Tejedor, V., Voituriez, R., Klafter, J., 2007. First-pasage time in complex scale-invariant media. Nature 450, 77–80.

    Article  Google Scholar 

  • Dushek, O., Coombs, D., 2008. Analysis of serial engagement and peptide-MHC transport in T cell receptor microclusters. Biophys. J. 94, 3447–3460.

    Article  Google Scholar 

  • Fauchauld, P., Tveraa, R., 2003. Using first passage time in the analysis of area-restricted search and habitat selection. Ecology 84, 282–288.

    Article  Google Scholar 

  • Frair, J., Merrill, E., Visscher, D., Fortin, D., Beyer, H., Morales, J., 2005. Scales of movement by elk (Cervus elaphus) in response to heterogeneity in forage resources and predation risk. Landsc. Ecol. 20, 273–287.

    Article  Google Scholar 

  • Gardiner, C., 1985. Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences, 2nd edition. Springer, New York.

    Google Scholar 

  • Grimm, V., 1999. Ten years of individual-based modelling in ecology: what have we learned and what could we learn in the future? Ecol. Model. 115, 129–148.

    Article  Google Scholar 

  • Gurney, W., Nisbet, R., 1998. Ecological Dynamics. Oxford University Press, London.

    Google Scholar 

  • Holgate, P., 1971. Random walk models for animal behavior. In: Patil, G., Pielou, E., Waters, W. (Eds.), Statistical Ecology, vol. 2, pp. 1–12. Penn. State Univ. Press, University Park.

    Google Scholar 

  • Holling, C., 1959. The components of predation as revealed by a study of small mammal predation of the European pine sawfly. Can. Entomol. 91.

  • Holmes, E., Lewis, M., Banks, J., Veit, R., 1994. Partial differential equations in ecology: spatial interactions and population dynamics. Ecology 75, 17–29.

    Article  Google Scholar 

  • James, A., 1999. Effects of Industrial Development on the Predator-Prey Relationship between Wolves and Caribou in Northeastern Alberta. Ph.D. thesis, University of Alberta.

  • Johnson, A., Wiens, B., Crist, T., 1992. Animal movements and population dynamics in heterogeneous landscapes. Landsc. Ecol. 7, 63–75.

    Article  Google Scholar 

  • Karlin, S., Taylor, H.M., 1998. An Introduction to Stochastic Modeling, 3rd edition. Academic Press, San Diego.

    MATH  Google Scholar 

  • Lima, S., Zollner, P., 1996. Towards a behavioral ecology of ecological landscapes. TREE 11, 131–135.

    Google Scholar 

  • McCauley, E., Wilson, W., Roos, A., 1993. Dynamics of age-structured and spatially structured predator-prey interactions: individual-based models and population-level formulations. Am. Natur. 142, 412–442.

    Article  Google Scholar 

  • Mech, D., Boitani, L., 2003. Wolves: behavior, ecology, and conservation. University of Chicago Press, Chicago.

    Google Scholar 

  • Moorcroft, P., Lewis, M., 2006. Mechanistic Home Range Analysis. Princeton University Press, Princeton.

    Google Scholar 

  • Moreau, M., Oshanin, G., Benichou, O., Coppey, M., 2003. Pascal principle for diffusion-controlled trapping reactions. Phys. Rev. E 67, 045104.

    Article  Google Scholar 

  • Moreau, M., Oshanin, G., Benichou, O., Coppey, M., 2004. Lattice theory of trapping reactions with mobile species. Phys. Rev. E 69, 046101.

    Article  Google Scholar 

  • Moreau, M., Benichou, O., Loverdo, C., Voituriez, R., 2007. Intermittent search processes in disordered medium. Europhys. Lett. 77, 234109.

    Article  Google Scholar 

  • Okubo, A., Levin, S., 2001. Diffusion and Ecological Problems. Springer, Berlin.

    Google Scholar 

  • Ovaskainen, O., 2008. Analytical and numerical tools for diffusion-based movement models. Theor. Popul. Biol. 73, 198–211.

    Article  Google Scholar 

  • Redner, S., 2001. A Guide to First-Passage Processes. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Redner, S., Krapivsky, P.L., 1999. Capture of the lamb: Diffusing predators seeking a diffusing prey. Am. J. Phys. 67, 1277–1283.

    Article  Google Scholar 

  • Schultz, C., Crone, E., 2001. Edge-mediated dispersal behavior in a prairie butterfly. Ecology 82, 1879–1892.

    Article  Google Scholar 

  • Siniff, D., Jessen, C., 1969. A simulation model of animal movement patterns. Adv. Ecol. Res. 6, 185–219.

    Article  Google Scholar 

  • Skellam, J., 1991. Random dispersal in theoretical populations. Bull. Math. Biol. 53, 135–165 (Reprinted from Biometrika 38, 196–218, 1953).

    Google Scholar 

  • Solomon, M., 1949. The natural control of animal populations. J. Anim. Ecol. 18, 1–35.

    Article  Google Scholar 

  • Sovada, M.A., Sargeant, A.B., Grier, J.W., 1995. Differential effects of coyotes and red foxes on duck nest success. J. Wildl. Manag. 59, 1–9.

    Article  Google Scholar 

  • Turchin, P., 1991. Translating foraging movements in heterogeneous environments into the spatial distribution of foragers. Ecology 72, 1253–1266.

    Article  Google Scholar 

  • Turchin, P., 1998. Quantitative Analysis of Movement. Sinaur Associates, Inc. Publishers.

  • Weins, J., 2001. Dispersal, Chapter the Landscape Context of Dispersal, pp. 96–109. Oxford University Press, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannah W. McKenzie.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

McKenzie, H.W., Lewis, M.A. & Merrill, E.H. First Passage Time Analysis of Animal Movement and Insights into the Functional Response. Bull. Math. Biol. 71, 107–129 (2009). https://doi.org/10.1007/s11538-008-9354-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-008-9354-x

Keywords

  • First passage time
  • Animal movement
  • Search time
  • Predation