Bulletin of Mathematical Biology

, Volume 70, Issue 4, pp 1013–1031 | Cite as

Sudden Shifts in Ecological Systems: Intermittency and Transients in the Coupled Ricker Population Model

  • Derin B. WyshamEmail author
  • Alan Hastings
Original Article


Many real ecological systems show sudden changes in behavior, phenomena sometimes categorized as regime shifts in the literature. The relative importance of exogenous versus endogenous forces producing regime shifts is an important question. These forces’ role in generating variability over time in ecological systems has been explored using tools from dynamical systems. We use similar ideas to look at transients in simple ecological models as a way of understanding regime shifts. Based in part on the theory of crises, we carefully analyze a simple two patch spatial model and begin to understand from a mathematical point of view what produces transient behavior in ecological systems. In particular, since the tools are essentially qualitative, we are able to suggest that transient behavior should be ubiquitous in systems with overcompensatory local dynamics, and thus should be typical of many ecological systems.


Population dynamics Transients Intermittency Coupled-map lattices Crises 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amritkar, R.E., Gade, P.M., 1993. Wavelength doubling bifurcations in coupled map lattices. Phys. Rev. Lett. 70(22), 3408–3411. CrossRefGoogle Scholar
  2. Amritkar, R.E., Gade, P.M., Gangal, A.D., Nandkumaran, V.M., 1991. Stability of periodic-orbits of coupled-map lattices. Phys. Rev. A 44(6), R3407–R3410. CrossRefMathSciNetGoogle Scholar
  3. Anteneodo, C., Pinto, S.E.D., Batista, A.M., Viana, R.L., 2003. Analytical results for coupled-map lattices with long-range interactions. Phys. Rev. E 68(4), 045202. CrossRefGoogle Scholar
  4. Astakhov, V.V., Anishchenko, V.S., Shabunin, A.V., 1995. Controlling spatiotemporal chaos in a chain of the coupled logistic maps. IEEE Trans. Circuits Syst. I-Fundam. Theory Appl. 42(6), 352–357. CrossRefGoogle Scholar
  5. Atkinson, K.E., 1978. An Introduction to Numerical Analysis. Wiley, New York. zbMATHGoogle Scholar
  6. Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.M., 1978. All Lyapunov characteristic numbers are effectively computable. C. R. Hebd. Seances Acad. Sci. Ser. A 286(9), 431–433. zbMATHMathSciNetGoogle Scholar
  7. Bjornstad, O.N., Grenfell, B.T., 2001. Noisy clockwork: time series analysis of population fluctuations in animals. Science 293(5530), 638–643. CrossRefGoogle Scholar
  8. Carpenter, S.R., Brock, W.A., 2006. Rising variance: a leading indicator of ecological transition. Ecol. Lett. 9(3), 308–315. Google Scholar
  9. De Monte, S., d’Ovidio, F., Chate, H., Mosekilde, E., 2004. Noise-induced macroscopic bifurcations in globally coupled chaotic units. Phys. Rev. Lett. 92(25), 254101. CrossRefGoogle Scholar
  10. Eckmann, J.-P., Ruelle, D., 1985. Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617–656. CrossRefMathSciNetGoogle Scholar
  11. Feigenbaum, M.J., 1978. Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19, 25–52. zbMATHCrossRefMathSciNetGoogle Scholar
  12. Gade, P.M., Amritkar, R.E., 1993. Spatially periodic-orbits in coupled-map lattices. Phys. Rev. E 47(1), 143–154. CrossRefMathSciNetGoogle Scholar
  13. Grebogi, C., Ott, E., Yorke, J.A., 1982. Chaotic attractors in crisis. Phys. Rev. Lett. 48(22), 1507–1510. CrossRefMathSciNetGoogle Scholar
  14. Grebogi, C., Ott, E., Yorke, J.A., 1983. Crises, sudden changes in chaotic attractors, and transient chaos. Physica D 7(1–3), 181–200. CrossRefMathSciNetGoogle Scholar
  15. Grebogi, C., Ott, E., Yorke, J.A., 1986. Critical exponent of chaotic transients in nonlinear dynamic-systems. Phys. Rev. Lett. 57(11), 1284–1287. CrossRefMathSciNetGoogle Scholar
  16. Grebogi, C., Ott, E., Romeiras, F., Yorke, J.A., 1987. Critical exponents for crisis-induced intermittency. Phys. Rev. A 36(11), 5365–5380. CrossRefMathSciNetGoogle Scholar
  17. Guckenheimer, J., Holmes, P., 1983. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences, vol. 42. Springer, New York. zbMATHGoogle Scholar
  18. Gyllenberg, M., Söderbacka, G., Ericsson, S., 1993. Does migration stabilize local population dynamics? Analysis of a discrete metapopulation model. Math. Biosci. 118, 25–49. zbMATHCrossRefMathSciNetGoogle Scholar
  19. Hastings, A., 1982. Dynamics of a single species in a spatially varying environment: the stabilizing role of high dispersal rates. J. Math. Biol. 16, 49–55. zbMATHMathSciNetGoogle Scholar
  20. Hastings, A., 1995. A metapopulation model with population jumps of varying sizes. Math. Biosci. 128, 285–298. zbMATHCrossRefGoogle Scholar
  21. Hastings, A., 2004. Transients: the key to long-term ecological understanding? Trends Ecol. Evol. 19, 39–45. CrossRefGoogle Scholar
  22. Hastings, A., Higgins, K., 1994. Persistence of transients in spatially structured ecological models. Science 263, 1133–1136. CrossRefGoogle Scholar
  23. Hastings, A., Hom, C.L., Ellner, S., Turchin, P., Godfray, H.C.J., 1993. Chaos in ecology—is mother-nature a strange attractor? Annu. Rev. Ecol. Syst. 24, 1–33. Google Scholar
  24. Hsu, G.H., Ott, E., Grebogi, C., 1988. Strange saddles and the dimension of their manifolds. Phys. Lett. A 127, 199–204. CrossRefMathSciNetGoogle Scholar
  25. Janaki, T.M., Rangarajan, G., Habib, S., Ryne, R.D., 1999. Computation of the Lyapunov spectrum for continuous-time dynamical systems and discrete maps. Phys. Rev. E 60, 6614–6626. zbMATHCrossRefMathSciNetGoogle Scholar
  26. Kaneko, K., 1992a. Supertransients, spatiotemporal intermittency and stability of fully developed spatiotemporal chaos. Phys. Lett. A 149(2–3), 105–112. Google Scholar
  27. Kaneko, K., 1992b. Overview of coupled map lattices. Chaos 2, 279–282. zbMATHCrossRefMathSciNetGoogle Scholar
  28. Kaneko, K., 1993. Chaotic traveling waves in a coupled map lattice. Physica D 68(3–4), 299–317. zbMATHCrossRefMathSciNetGoogle Scholar
  29. Katok, A., Hasselblatt, B., 1995. Introduction to the Modern Theory of Dynamical Systems. Encyclopedia of Mathematics and its Applications, vol 54. Cambridge University Press, New York. zbMATHGoogle Scholar
  30. Kendall, B.E., Fox, G.A., 1998. Spatial structure, environmental heterogeneity, and population dynamics: analysis of the coupled logistics map. Theor. Popul. Biol. 54, 11–37. zbMATHCrossRefGoogle Scholar
  31. Konishi, T., Kaneko, K., 1992. Clustered motion in symplectic coupled map systems. J. Phys. A 25, 6283–6296. zbMATHCrossRefMathSciNetGoogle Scholar
  32. Kuznetsov, Y.A., 1998. Elements of Applied Bifurcation Theory. Applied Mathematical Sciences, vol. 112. Springer, New York. zbMATHGoogle Scholar
  33. Labra, F.A., Lagos, N.A., Marquet, P.A., 2003. Dispersal and transient dynamics in metapopulations. Ecol. Lett. 6, 197–204. CrossRefGoogle Scholar
  34. Lai, Y.C., 1995. Persistence of supertransients of spatiotemporal chaotic dynamical systems in noisy environment. Phys. Lett. A 200, 418–422. CrossRefGoogle Scholar
  35. Lloyd, A.L., 1995. The coupled logistic map: a simple model for the effects of spatial heterogeneity on population dynamics. J. Theor. Biol. 173, 217–230. CrossRefGoogle Scholar
  36. Ludwig, D., Jones, D.D., Holling, C.S., 1978. Qualitative-analysis of insect outbreak systems—spruce budworm and forest. J. Animal Ecol. 47(1), 315–332. CrossRefGoogle Scholar
  37. Manrubia, S.C., Mikhailov, A.S., 2000. Very long transients in globally coupled maps. Europhys. Lett. 50, 580–586. CrossRefGoogle Scholar
  38. May, R.M., 1973. Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton. Google Scholar
  39. Morita, S., 1996. Bifurcations in globally coupled chaotic maps. Phys. Lett. A 211(5), 258–264. zbMATHCrossRefMathSciNetGoogle Scholar
  40. Parekh, N., Parthasarathy, S., Sinha, S., 1998. Global and local control of spatiotemporal chaos in coupled map lattices. Phys. Rev. Lett. 81, 1401–1404. CrossRefGoogle Scholar
  41. Press, W., Teukolsky, S., Vetterling, W., Flannery, B., 2002. Numerical Reicipes in C++: The Art of Scientific Computing. Cambridge University Press, Cambridge. Google Scholar
  42. Ricker, W., 1954. Stock and recruitment. J. Fish. Res. Board Can. 11, 559–663. Google Scholar
  43. Robinson, C., 1995. Dynamical Systems. CRC Press, Boca Raton. zbMATHGoogle Scholar
  44. Saravia, L.A., Ruxton, G.D., Coviella, C.E., 2000. The importance of transients’ dynamics in spatially extended populations. Proc. Roy. Soc. Lond. 267, 1781–1786. CrossRefGoogle Scholar
  45. Scheffer, M., van Nes, E.H., 2004. Mechanisms for marine regime shifts: can we use lakes as microcosms for oceans? Prog. Oceanogr. 60(2–4), 303–319. CrossRefGoogle Scholar
  46. Silva, J.A.L., De Castro, M.L., Justo, D.A.R., 2001. Stability in a metapopulation model with density-dependent dispersal. Bull. Math. Biol. 63, 485–505. CrossRefGoogle Scholar
  47. Wysham, D.B., Meiss, J.D., 2006. Iterative techniques for computing the linearized manifolds of quasiperiodic tori. Chaos 16(2), 023129. CrossRefMathSciNetGoogle Scholar
  48. Zhu, K.E., Chen, T.L., Bian, G.X., 2003. Controlling spatiotemporal chaos in coupled map lattices to periodic orbits. Commun. Theor. Phys. 40(5), 527–532. MathSciNetGoogle Scholar

Copyright information

© Society for Mathematical Biology 2007

Authors and Affiliations

  1. 1.Environmental Science and PolicyUniversity of CaliforniaDavisUSA

Personalised recommendations