Skip to main content
Log in

Asymptotic Enumeration of RNA Structures with Pseudoknots

Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper, we present the asymptotic enumeration of RNA structures with pseudoknots. We develop a general framework for the computation of exponential growth rate and the asymptotic expansion for the numbers of k-noncrossing RNA structures. Our results are based on the generating function for the number of k-noncrossing RNA pseudoknot structures, \({\mathsf{S}}_{k}(n)\) , derived in Bull. Math. Biol. (2008), where k−1 denotes the maximal size of sets of mutually intersecting bonds. We prove a functional equation for the generating function \(\sum_{n\ge 0}{\mathsf{S}}_{k}(n)z^{n}\) and obtain for k=2 and k=3, the analytic continuation and singular expansions, respectively. It is implicit in our results that for arbitrary k singular expansions exist and via transfer theorems of analytic combinatorics, we obtain asymptotic expression for the coefficients. We explicitly derive the asymptotic expressions for 2- and 3-noncrossing RNA structures. Our main result is the derivation of the formula \({\mathsf{S}}_{3}(n)\sim \frac{10.4724\cdot4!}{n(n-1)\cdots(n-4)}(\frac{5+\sqrt{21}}{2})^{n}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Akutsu, T., 2000. Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discret. Appl. Math. 104, 45–62.

    Article  MATH  MathSciNet  Google Scholar 

  • Chamorro, M., Parkin, N., Varmus, H.E., 1991. An RNA pseudoknot and an optimal heptameric shift site are required for highly efficient ribosomal frameshifting on a retroviral messenger RNA. Proc. Natl. Acad. Sci. USA 89, 713–717.

    Article  Google Scholar 

  • Chen, W.Y.C., Deng, E.Y.P., Du, R.R.X., Stanley, R.P., Yan, C.H., 2007. Crossings and nestings of matchings and partitions. Trans. Am. Math. Soc. 359, 1555–1575.

    Article  MATH  MathSciNet  Google Scholar 

  • Flajolet, P., 1999. Singularity analysis and asymptotics of Bernoulli sums. Theor. Comput. Sci. 215(1–2), 371–381.

    Article  MATH  MathSciNet  Google Scholar 

  • Flajolet, P., Fill, J.A., Kapur, N., 2005. Singularity analysis, Hadamard products, and tree recurrences. J. Comput. Appl. Math. 174, 271–313.

    Article  MATH  MathSciNet  Google Scholar 

  • Flajolet, P., Grabiner, P., Kirschenhofer, P., Prodinger, H., Tichy, R.F., 1994. Mellin transforms and asymptotics: digital sums. Theor. Comput. Sci. 123, 291–314.

    Article  MATH  Google Scholar 

  • Gao, Z., Richmond, L.B., 1992. Central and local limit theorems applied to asymptotic enumeration. J. Appl. Comput. Anal. 41, 177–186.

    MATH  MathSciNet  Google Scholar 

  • Gessel, I.M., Zeilberger, D., 1992. Random walk in a Weyl chamber. Proc. Am. Math. Soc. 115, 27–31.

    Article  MATH  MathSciNet  Google Scholar 

  • Haslinger, C., Stadler, P.F., 1999. RNA Structures with pseudo-knots. Bull. Math. Biol. 61, 437–467.

    Article  Google Scholar 

  • Hofacker, I.L., Schuster, P., Stadler, P.F., 1998. Combinatorics of RNA secondary structures. Discret. Appl. Math. 88, 207–237.

    Article  MATH  MathSciNet  Google Scholar 

  • Howell, J.A., Smith, T.F., Waterman, M.S., 1980. Computation of generating functions for biological molecules. SIAM J. Appl. Math. 39, 119–133.

    Article  MATH  MathSciNet  Google Scholar 

  • Jin, E.Y., Qin, J., Reidys, C.M., 2008. Combinatorics of RNA structures with pseudoknots. Bull. Math. Biol. 70, 45–67.

    Article  Google Scholar 

  • Konings, D.A.M., Gutell, R.R., 1995. A comparison of thermodynamic foldings with comparatively derived structures of 16s and 16s-like rRNAs. RNA 1, 559–574.

    Google Scholar 

  • Lindstroem, B., 1973. On the vector representation of induced matroids. Bull. Lond. Math. Soc. 5, 85–90.

    Article  MATH  Google Scholar 

  • Loria, A., Pan, T., 1996. Domain structure of the ribozyme from eubacterial ribonuclease p. RNA 2, 551–563.

    Google Scholar 

  • Lyngso, R., Pedersen, C., 1996. Pseudoknots in RNA secondary structures. In: H. Flyvbjerg, J. Hertz, M.H. Jensen, O.G. Mouritsen, K. Sneppen (Eds.), Physics of Biological Systems: From Molecules to Species. Springer, Berlin.

    Google Scholar 

  • Mapping RNA Form and Function, 2005. Science 2, September 2005.

  • McCaskill, J.S., 1990. The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29, 1105–1119.

    Article  Google Scholar 

  • Odlyzko, A.M., 1992. Explicit tauberian estimates for functions with positive coefficients. J. Comput. Appl. Math. 41, 187–197.

    Article  MATH  MathSciNet  Google Scholar 

  • Odlyzko, A.M., 1995. Handbook of Combinatorics. Elsevier, Amsterdam. Chapter 22.

    Google Scholar 

  • Penner, R.C., Waterman, M.S., 1993. Spaces of RNA secondary structures. Adv. Math. 101, 31–49.

    Article  MATH  MathSciNet  Google Scholar 

  • Popken, A., 1953. Asymptotic expansions from an algebraic standpoint. Indag. Math. 15, 131–143.

    MathSciNet  Google Scholar 

  • Rivas, E., Eddy, S., 1999. A dynamic programming algorithm for RNA structure prediction inclusing pseudoknots. J. Mol. Biol. 285, 2053–2068.

    Article  Google Scholar 

  • Schmitt, W.R., Waterman, M.S., 1994. Linear trees and RNA secondary structure. Discret. Appl. Math. 51, 317–323.

    Article  MATH  MathSciNet  Google Scholar 

  • Tacker, M., Fontana, W., Stadler, P.F., Schuster, P., 1994. Statistics of RNA melting kinetics. Eur. Biophys. J. 23, 29–38.

    Google Scholar 

  • Tacker, M., Stadler, P.F., Bauer, E.G., Hofacker, I.L., Schuster, P., 1996. Algorithm independent properties of RNA secondary structure predictions. Eur. Biophys. J. 25, 115–130.

    Article  Google Scholar 

  • Titchmarsh, E.C., 1939. The Theory of Functions. Oxford University Press, London.

    MATH  Google Scholar 

  • Tuerk, C., MacDougal, S., Gold, L., 1992. RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase. Proc. Natl. Acad. Sci. USA 89, 6988–6992.

    Article  Google Scholar 

  • Uemura, Y., Hasegawa, A., Kobayashi, S., Yokomori, T., 1999. Tree adjoining grammars for RNA structure prediction. Theor. Comput. Sci. 210, 277–303.

    Article  MATH  MathSciNet  Google Scholar 

  • Waterman, M.S., 1978. Secondary structure of single-stranded nucleic acids. Adv. Math. I (suppl.) 1, 167–212.

    MathSciNet  Google Scholar 

  • Waterman, M.S., 1979. Combinatorics of RNA hairpins and cloverleafs. Stud. Appl. Math. 60, 91–96.

    MathSciNet  Google Scholar 

  • Waterman, M.S., Smith, T.F., 1986. Rapid dynamic programming algorithms for RNA secondary structure. Adv. Appl. Math. 7, 455–464.

    Article  MATH  MathSciNet  Google Scholar 

  • Westhof, E., Jaeger, L., 1992. RNA pseudoknots. Curr. Opin. Struct. Biol. 2, 327–333.

    Article  Google Scholar 

  • Wong, R., Wyman, M., 1974. The method of Darboux. J. Approx. Theory 10, 159–171.

    Article  MATH  MathSciNet  Google Scholar 

  • Zuker, M., Sankoff, D., 1984. RNA secondary structures and their prediction. Bull. Math. Biol. 46(4), 591–621.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian M. Reidys.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, E.Y., Reidys, C.M. Asymptotic Enumeration of RNA Structures with Pseudoknots. Bull. Math. Biol. 70, 951–970 (2008). https://doi.org/10.1007/s11538-007-9265-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-007-9265-2

Keywords

Navigation