Asymptotic Enumeration of RNA Structures with Pseudoknots

Abstract

In this paper, we present the asymptotic enumeration of RNA structures with pseudoknots. We develop a general framework for the computation of exponential growth rate and the asymptotic expansion for the numbers of k-noncrossing RNA structures. Our results are based on the generating function for the number of k-noncrossing RNA pseudoknot structures, \({\mathsf{S}}_{k}(n)\) , derived in Bull. Math. Biol. (2008), where k−1 denotes the maximal size of sets of mutually intersecting bonds. We prove a functional equation for the generating function \(\sum_{n\ge 0}{\mathsf{S}}_{k}(n)z^{n}\) and obtain for k=2 and k=3, the analytic continuation and singular expansions, respectively. It is implicit in our results that for arbitrary k singular expansions exist and via transfer theorems of analytic combinatorics, we obtain asymptotic expression for the coefficients. We explicitly derive the asymptotic expressions for 2- and 3-noncrossing RNA structures. Our main result is the derivation of the formula \({\mathsf{S}}_{3}(n)\sim \frac{10.4724\cdot4!}{n(n-1)\cdots(n-4)}(\frac{5+\sqrt{21}}{2})^{n}\) .

This is a preview of subscription content, access via your institution.

References

  1. Akutsu, T., 2000. Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discret. Appl. Math. 104, 45–62.

    MATH  Article  MathSciNet  Google Scholar 

  2. Chamorro, M., Parkin, N., Varmus, H.E., 1991. An RNA pseudoknot and an optimal heptameric shift site are required for highly efficient ribosomal frameshifting on a retroviral messenger RNA. Proc. Natl. Acad. Sci. USA 89, 713–717.

    Article  Google Scholar 

  3. Chen, W.Y.C., Deng, E.Y.P., Du, R.R.X., Stanley, R.P., Yan, C.H., 2007. Crossings and nestings of matchings and partitions. Trans. Am. Math. Soc. 359, 1555–1575.

    MATH  Article  MathSciNet  Google Scholar 

  4. Flajolet, P., 1999. Singularity analysis and asymptotics of Bernoulli sums. Theor. Comput. Sci. 215(1–2), 371–381.

    MATH  Article  MathSciNet  Google Scholar 

  5. Flajolet, P., Fill, J.A., Kapur, N., 2005. Singularity analysis, Hadamard products, and tree recurrences. J. Comput. Appl. Math. 174, 271–313.

    MATH  Article  MathSciNet  Google Scholar 

  6. Flajolet, P., Grabiner, P., Kirschenhofer, P., Prodinger, H., Tichy, R.F., 1994. Mellin transforms and asymptotics: digital sums. Theor. Comput. Sci. 123, 291–314.

    MATH  Article  Google Scholar 

  7. Gao, Z., Richmond, L.B., 1992. Central and local limit theorems applied to asymptotic enumeration. J. Appl. Comput. Anal. 41, 177–186.

    MATH  MathSciNet  Google Scholar 

  8. Gessel, I.M., Zeilberger, D., 1992. Random walk in a Weyl chamber. Proc. Am. Math. Soc. 115, 27–31.

    MATH  Article  MathSciNet  Google Scholar 

  9. Haslinger, C., Stadler, P.F., 1999. RNA Structures with pseudo-knots. Bull. Math. Biol. 61, 437–467.

    Article  Google Scholar 

  10. Hofacker, I.L., Schuster, P., Stadler, P.F., 1998. Combinatorics of RNA secondary structures. Discret. Appl. Math. 88, 207–237.

    MATH  Article  MathSciNet  Google Scholar 

  11. Howell, J.A., Smith, T.F., Waterman, M.S., 1980. Computation of generating functions for biological molecules. SIAM J. Appl. Math. 39, 119–133.

    MATH  Article  MathSciNet  Google Scholar 

  12. Jin, E.Y., Qin, J., Reidys, C.M., 2008. Combinatorics of RNA structures with pseudoknots. Bull. Math. Biol. 70, 45–67.

    Article  Google Scholar 

  13. Konings, D.A.M., Gutell, R.R., 1995. A comparison of thermodynamic foldings with comparatively derived structures of 16s and 16s-like rRNAs. RNA 1, 559–574.

    Google Scholar 

  14. Lindstroem, B., 1973. On the vector representation of induced matroids. Bull. Lond. Math. Soc. 5, 85–90.

    MATH  Article  Google Scholar 

  15. Loria, A., Pan, T., 1996. Domain structure of the ribozyme from eubacterial ribonuclease p. RNA 2, 551–563.

    Google Scholar 

  16. Lyngso, R., Pedersen, C., 1996. Pseudoknots in RNA secondary structures. In: H. Flyvbjerg, J. Hertz, M.H. Jensen, O.G. Mouritsen, K. Sneppen (Eds.), Physics of Biological Systems: From Molecules to Species. Springer, Berlin.

    Google Scholar 

  17. Mapping RNA Form and Function, 2005. Science 2, September 2005.

  18. McCaskill, J.S., 1990. The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29, 1105–1119.

    Article  Google Scholar 

  19. Odlyzko, A.M., 1992. Explicit tauberian estimates for functions with positive coefficients. J. Comput. Appl. Math. 41, 187–197.

    MATH  Article  MathSciNet  Google Scholar 

  20. Odlyzko, A.M., 1995. Handbook of Combinatorics. Elsevier, Amsterdam. Chapter 22.

    Google Scholar 

  21. Penner, R.C., Waterman, M.S., 1993. Spaces of RNA secondary structures. Adv. Math. 101, 31–49.

    MATH  Article  MathSciNet  Google Scholar 

  22. Popken, A., 1953. Asymptotic expansions from an algebraic standpoint. Indag. Math. 15, 131–143.

    MathSciNet  Google Scholar 

  23. Rivas, E., Eddy, S., 1999. A dynamic programming algorithm for RNA structure prediction inclusing pseudoknots. J. Mol. Biol. 285, 2053–2068.

    Article  Google Scholar 

  24. Schmitt, W.R., Waterman, M.S., 1994. Linear trees and RNA secondary structure. Discret. Appl. Math. 51, 317–323.

    MATH  Article  MathSciNet  Google Scholar 

  25. Tacker, M., Fontana, W., Stadler, P.F., Schuster, P., 1994. Statistics of RNA melting kinetics. Eur. Biophys. J. 23, 29–38.

    Google Scholar 

  26. Tacker, M., Stadler, P.F., Bauer, E.G., Hofacker, I.L., Schuster, P., 1996. Algorithm independent properties of RNA secondary structure predictions. Eur. Biophys. J. 25, 115–130.

    Article  Google Scholar 

  27. Titchmarsh, E.C., 1939. The Theory of Functions. Oxford University Press, London.

    Google Scholar 

  28. Tuerk, C., MacDougal, S., Gold, L., 1992. RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase. Proc. Natl. Acad. Sci. USA 89, 6988–6992.

    Article  Google Scholar 

  29. Uemura, Y., Hasegawa, A., Kobayashi, S., Yokomori, T., 1999. Tree adjoining grammars for RNA structure prediction. Theor. Comput. Sci. 210, 277–303.

    MATH  Article  MathSciNet  Google Scholar 

  30. Waterman, M.S., 1978. Secondary structure of single-stranded nucleic acids. Adv. Math. I (suppl.) 1, 167–212.

    MathSciNet  Google Scholar 

  31. Waterman, M.S., 1979. Combinatorics of RNA hairpins and cloverleafs. Stud. Appl. Math. 60, 91–96.

    MathSciNet  Google Scholar 

  32. Waterman, M.S., Smith, T.F., 1986. Rapid dynamic programming algorithms for RNA secondary structure. Adv. Appl. Math. 7, 455–464.

    MATH  Article  MathSciNet  Google Scholar 

  33. Westhof, E., Jaeger, L., 1992. RNA pseudoknots. Curr. Opin. Struct. Biol. 2, 327–333.

    Article  Google Scholar 

  34. Wong, R., Wyman, M., 1974. The method of Darboux. J. Approx. Theory 10, 159–171.

    MATH  Article  MathSciNet  Google Scholar 

  35. Zuker, M., Sankoff, D., 1984. RNA secondary structures and their prediction. Bull. Math. Biol. 46(4), 591–621.

    MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christian M. Reidys.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jin, E.Y., Reidys, C.M. Asymptotic Enumeration of RNA Structures with Pseudoknots. Bull. Math. Biol. 70, 951–970 (2008). https://doi.org/10.1007/s11538-007-9265-2

Download citation

Keywords

  • Asymptotic enumeration
  • RNA secondary structure
  • k-noncrossing RNA structure
  • Pseudoknot
  • Generating function
  • Transfer theorem
  • Hankel contour
  • Singular expansion