The Morphostatic Limit for a Model of Skeletal Pattern Formation in the Vertebrate Limb

Abstract

A recently proposed mathematical model of a “core” set of cellular and molecular interactions present in the developing vertebrate limb was shown to exhibit pattern-forming instabilities and limb skeleton-like patterns under certain restrictive conditions, suggesting that it may authentically represent the underlying embryonic process (Hentschel et al., Proc. R. Soc. B 271, 1713–1722, 2004). The model, an eight-equation system of partial differential equations, incorporates the behavior of mesenchymal cells as “reactors,” both participating in the generation of morphogen patterns and changing their state and position in response to them. The full system, which has smooth solutions that exist globally in time, is nonetheless highly complex and difficult to handle analytically or numerically. According to a recent classification of developmental mechanisms (Salazar-Ciudad et al., Development 130, 2027–2037, 2003), the limb model of Hentschel et al. is “morphodynamic,” since differentiation of new cell types occurs simultaneously with cell rearrangement. This contrasts with “morphostatic” mechanisms, in which cell identity becomes established independently of cell rearrangement. Under the hypothesis that development of some vertebrate limbs employs the core mechanism in a morphostatic fashion, we derive in an analytically rigorous fashion a pair of equations representing the spatiotemporal evolution of the morphogen fields under the assumption that cell differentiation relaxes faster than the evolution of the overall cell density (i.e., the morphostatic limit of the full system). This simple reaction–diffusion system is unique in having been derived analytically from a substantially more complex system involving multiple morphogens, extracellular matrix deposition, haptotaxis, and cell translocation. We identify regions in the parameter space of the reduced system where Turing-type pattern formation is possible, which we refer to as its “Turing space.” Obtained values of the parameters are used in numerical simulations of the reduced system, using a new Galerkin finite element method, in tissue domains with nonstandard geometry. The reduced system exhibits patterns of spots and stripes like those seen in developing limbs, indicating its potential utility in hybrid continuum-discrete stochastic modeling of limb development. Lastly, we discuss the possible role in limb evolution of selection for increasingly morphostatic developmental mechanisms.

This is a preview of subscription content, access via your institution.

References

  1. Alber, M., Hentschel, H.G.E., Kazmierczak, B., Newman, S.A., 2005a. Existence of solutions to a new model of biological pattern formation. J. Math. Anal. Appl. 308, 175–194.

    MATH  Article  MathSciNet  Google Scholar 

  2. Alber, M., Hentschel, H.G.E., Glimm, T., Kazmierczak, B., Newman, S.A., 2005b. Stability of n-dimensional patterns in a generalized Turing system: implications for biological pattern formation. Nonlinearity 18, 125–138.

    MATH  Article  MathSciNet  Google Scholar 

  3. Alberch, P., Gale, E.A., 1983. Size dependence during the development of the amphibian foot. Colchicine-induced digital loss and reduction. J. Embryol. Exp. Morphol. 76, 177–197.

    Google Scholar 

  4. Brockes, J.P., Kumar, A., 2005. Appendage regeneration in adult vertebrates and implications for regenerative medicine. Science 310, 1919–1923.

    Article  Google Scholar 

  5. Chaturvedi, R., Huang, C., Kazmierczak, B., Schneider, T., Izaguirre, J.A., Newman, S.A., Glazier, J.A., Alber, M., 2005. On multiscale approaches to 3-dimensional modeling of morphogenesis. J. R. Soc. Interface 2, 237–253.

    Article  Google Scholar 

  6. Cheng, Y., Shu, C.-W., 2007. A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput., posted on September 6, 2007, PII: S 0025-5718(07)02045-5, to appear in print.

  7. Cickovski, T., Huang, C., Chaturvedi, R., Glimm, T., Hentschel, H.G.E., Alber, M., Glazier, J.A., Newman, S.A., Izaguirre, J.A., 2005. A framework for three-dimensional simulation of morphogenesis. IEEE/ACM Trans. Comput. Biol. Bioinf. 2, 273–288.

    Article  Google Scholar 

  8. Coates, M.I., Clack, J.A., 1990. Polydactyly in the earliest known tetrapod limbs. Nature 347, 66–69.

    Article  Google Scholar 

  9. Cockburn, B., Shu, C.-W., 1989. TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435.

    MATH  Article  MathSciNet  Google Scholar 

  10. Cockburn, B., Shu, C.-W., 1991. The Runge–Kutta local projection P1-discontinuous Galerkin finite element method for scalar conservation laws. Math. Model. Numer. Anal. 25, 337–361.

    MATH  MathSciNet  Google Scholar 

  11. Cockburn, B., Shu, C.-W., 1998a. The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224.

    MATH  Article  MathSciNet  Google Scholar 

  12. Cockburn, B., Shu, C.-W., 1998b. The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463.

    MATH  Article  MathSciNet  Google Scholar 

  13. Cockburn, B., Lin, S.-Y., Shu, C.-W., 1989. TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90–113.

    MATH  Article  MathSciNet  Google Scholar 

  14. Cockburn, B., Hou, S., Shu, C.-W., 1990. The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comput. 54, 545–581.

    MATH  Article  MathSciNet  Google Scholar 

  15. Cooke, J., Summerbell, D., 1981. Control of growth related to pattern specification in chick wing-bud mesenchyme. J. Embryol. Exp. Morphol. 65(Suppl.), 169–185.

    Google Scholar 

  16. Crampin, E.J., Hackborn, W.W., Maini, P.K., 2002. Pattern formation in reaction–diffusion models with nonuniform domain growth. Bull. Math. Biol. 64, 747–769.

    Article  Google Scholar 

  17. Cross, G.W., 1978. Three types of matrix instability. J. Linear Algebra Appl. 20, 253–263.

    MATH  Article  MathSciNet  Google Scholar 

  18. Daeschler, E.B., Shubin, N.H., Jenkins, F.A. Jr., 2006. A Devonian tetrapod-like fish and the evolution of the tetrapod body plan. Nature 440, 757–763.

    Article  Google Scholar 

  19. De Joussineau, C., Soule, J., Martin, M., Anguille, C., Montcourrier, P., Alexandre, D., 2003. Delta-promoted filopodia mediate long-range lateral inhibition in Drosophila. Nature 426, 555–559.

    Article  Google Scholar 

  20. Endo, T., Bryant, S.V., Gardiner, D.M., 2004. A stepwise model system for limb regeneration. Dev. Biol. 270, 135–145.

    Article  Google Scholar 

  21. Entchev, E.V., Schwabedissen, A., Gonzalez-Gaitan, M., 2000. Gradient formation of the TGF-β homolog Dpp. Cell 103, 981–991.

    Article  Google Scholar 

  22. Filion, R.J., Popel, A.S., 2004. A reaction–diffusion model of basic fibroblast growth factor interactions with cell surface receptors. Ann. Biomed. Eng. 32, 645–663.

    Article  Google Scholar 

  23. Forgacs, G., Newman, S.A., 2005. Biological Physics of the Developing Embryo. Cambridge University Press, Cambridge.

    Google Scholar 

  24. Franssen, R.A., Marks, S., Wake, D., Shubin, N., 2005. Limb chondrogenesis of the seepage salamander, Desmognathus aeneus (Amphibia: Plethodontidae). J. Morphol. 265, 87–101.

    Article  Google Scholar 

  25. Frenz, D.A., Jaikaria, N.S., Newman, S.A., 1989. The mechanism of precartilage mesenchymal condensation: a major role for interaction of the cell surface with the amino-terminal heparin-binding domain of fibronectin. Dev. Biol. 136, 97–103.

    Article  Google Scholar 

  26. Fujimaki, R., Toyama, Y., Hozumi, N., Tezuka, K., 2006. Involvement of Notch signaling in initiation of prechondrogenic condensation and nodule formation in limb bud micromass cultures. J. Bone Miner. Metab. 24, 191–198.

    Article  Google Scholar 

  27. Gehris, A.L., Stringa, E., Spina, J., Desmond, M.E., Tuan, R.S., Bennett, V.D., 1997. The region encoded by the alternatively spliced exon IIIA in mesenchymal fibronectin appears essential for chondrogenesis at the level of cellular condensation. Dev. Biol. 190, 191–205.

    Article  Google Scholar 

  28. Hartmann, D., Miura, T., 2006. Modelling in vitro lung branching morphogenesis during development. J. Theor. Biol. 242, 862–872.

    Article  MathSciNet  Google Scholar 

  29. Hentschel, H.G.E., Glimm, T., Glazier, J.A., Newman, S.A., 2004. Dynamical mechanisms for skeletal pattern formation in the vertebrate limb. Proc. R. Soc. B 271, 1713–1722.

    Article  Google Scholar 

  30. Hinchliffe, J.R., 2002. Developmental basis of limb evolution. Int. J. Dev. Biol. 46, 835–845.

    Google Scholar 

  31. Izaguirre, J.A., Chaturvedi, R., Huang, C., Cickovski, T., Coffland, J., Thomas, G., Forgacs, G., Alber, M., Hentschel, G., Newman, S.A., Glazier, J.A., 2004. CompuCell, a multi-model framework for simulation of morphogenesis. Bioinformatics 20, 1129–1137.

    Article  Google Scholar 

  32. Johnson, C., 1987. Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  33. Lander, A.D., 2007. Morpheus unbound: reimagining the morphogen gradient. Cell 128, 245–256.

    Article  Google Scholar 

  34. Lander, A.D., Nie, Q., Wan, F.Y., 2002. Do morphogen gradients arise by diffusion? Dev. Cell 2, 785–796.

    Article  Google Scholar 

  35. Leonard, C.M., Fuld, H.M., Frenz, D.A., Downie, S.A., Massagu, J., Newman, S.A., 1991. Role of transforming growth factor-β in chondrogenic pattern formation in the embryonic limb: stimulation of mesenchymal condensation and fibronectin gene expression by exogenous TGF-β and evidence for endogenous TGF-β-like activity. Dev. Biol. 145, 99–109.

    Article  Google Scholar 

  36. Litingtung, Y., Dahn, R.D., Li, Y., Fallon, J.F., Chiang, C., 2002. Shh and Gli3 are dispensable for limb skeleton formation but regulate digit number and identity. Nature 418, 979–983.

    Article  Google Scholar 

  37. Lyons, M.J., Harrison, L.G., 1992. Stripe selection: an intrinsic property of some pattern-forming models with nonlinear dynamics. Dev. Dyn. 195, 201–215.

    Google Scholar 

  38. Martin, G.R., 1998. The roles of FGFs in the early development of vertebrate limbs. Genes Dev. 12, 1571–1586.

    Google Scholar 

  39. Merkin, J.H., Sleeman, B.D., 2005. On the spread of morphogens. J. Math. Biol. 51, 1–17.

    MATH  Article  MathSciNet  Google Scholar 

  40. Miura, T., Maini, P.K., 2004. Speed of pattern appearance in reaction–diffusion models: implications in the pattern formation of limb bud mesenchyme cells. Bull. Math. Biol. 66, 627–649.

    Article  MathSciNet  Google Scholar 

  41. Miura, T., Shiota, K., 2000a. TGF-β2 acts as an activator molecule in reaction–diffusion model and is involved in cell sorting phenomenon in mouse limb micromass culture. Dev. Dyn. 217, 241–249.

    Article  Google Scholar 

  42. Miura, T., Shiota, K., 2000b. Extracellular matrix environment influences chondrogenic pattern formation in limb bud micromass culture: experimental verification of theoretical models. Anat. Rec. 258, 100–107.

    Article  Google Scholar 

  43. Miura, T., Shiota, K., 2002. Depletion of FGF acts as a lateral inhibitory factor in lung branching morphogenesis in vitro. Mech. Dev. 116, 29–38.

    Article  Google Scholar 

  44. Miura, T., Shiota, K., Morriss-Kay, G., Maini, P.K., 2006. Mixed-mode pattern in Doublefoot mutant mouse limb-Turing reaction–diffusion model on a growing domain during limb development. J. Theor. Biol. 240, 562–573.

    Article  MathSciNet  Google Scholar 

  45. Moftah, M.Z., Downie, S.A., Bronstein, N.B., Mezentseva, N., Pu, J., Maher, P.A., Newman, S.A., 2002. Ectodermal FGFs induce perinodular inhibition of limb chondrogenesis in vitro and in vivo via FGF receptor 2. Dev. Biol. 249, 270–282.

    Article  Google Scholar 

  46. Murray, J.D., 1993. Mathematical Biology, 2nd edn. Springer, Berlin.

    MATH  Google Scholar 

  47. Myerscough, M.R., Maini, P.K., Painter, K.J., 1998. Pattern formation in a generalized chemotactic model. Bull. Math. Biol. 60, 1–26.

    MATH  Article  Google Scholar 

  48. Nelson, C.M., Vanduijn, M.M., Inman, J.L., Fletcher, D.A., Bissell, M.J., 2006. Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science 314, 298–300.

    Article  Google Scholar 

  49. Newman, S.A., 1988. Lineage and pattern in the developing vertebrate limb. Trends Genet. 4, 329–332.

    Article  Google Scholar 

  50. Newman, S.A., 2003. From physics to development: the evolution of morphogenetic mechanisms. In: G.B. Müller, S.A. Newman (Eds.), Origination of Organismal Form: Beyond the Gene in Developmental and Evolutionary Biology. MIT Press, Cambridge, pp. 221–239.

    Google Scholar 

  51. Newman, S.A., Bhat, R., Activator-inhibitor mechanisms of vertebrate limb pattern formation. Birth Defects Res C Embryo Today, in press.

  52. Newman, S.A., Frisch, H., 1979. Dynamics of skeletal pattern formation in developing chick limb. Science 205, 662–668.

    Article  Google Scholar 

  53. Newman, S.A., Müller, G.B., 2005. Origination and innovation in the vertebrate limb skeleton: an epigenetic perspective. J. Exp. Zoolog. B Mol. Dev. Evol. 304, 593–609.

    Article  Google Scholar 

  54. Nijhout, H.F., 2003. Gradients, diffusion and genes in pattern formation. In: G.B. Müller, S.A. Newman (Eds.), Origination of Organismal Form: Beyond the Gene in Developmental and Evolutionary Biology. MIT Press, Cambridge, pp. 165–181.

    Google Scholar 

  55. Pao, C.V., 1992. Nonlinear Parabolic and Elliptic Equations. Plenum, New York.

    MATH  Google Scholar 

  56. Rauch, E.M., Millonas, M.M., 2004. The role of trans-membrane signal transduction in Turing-type cellular pattern formation. J. Theor. Biol. 226, 401–407.

    Article  MathSciNet  Google Scholar 

  57. Salazar-Ciudad, I., Jernvall, J., 2005. Graduality and innovation in the evolution of complex phenotypes: insights from development. J. Exp. Zool. B (Mol. Dev. Evol.) 304B, 619–631.

    Article  Google Scholar 

  58. Salazar-Ciudad, I., Newman, S.A., Solé, R., 2001. Phenotypic and dynamical transitions in model genetic networks. I. Emergence of patterns and genotype-phenotype relationships. Evol. Dev. 3, 84–94.

    Article  Google Scholar 

  59. Salazar-Ciudad, I., Jernvall, J., Newman, S.A., 2003. Mechanisms of pattern formation in development and evolution. Development 130, 2027–2037.

    Article  Google Scholar 

  60. Salazar-Ciudad, I., 2006. On the origins of morphological disparity and its diverse developmental bases. Bioessays 28, 1112–1122.

    Article  Google Scholar 

  61. Satnoianu, R.A., van den Driessche, P., 2005. Some remarks on matrix stability with application to Turing instability. J. Linear Algebra Appl. 398, 69–74.

    MATH  Article  Google Scholar 

  62. Satnoianu, R.A., Menzinger, M., Maini, P.K., 2000. Turing instabilities in general systems. J. Math. Biol. 41, 493–512.

    MATH  Article  MathSciNet  Google Scholar 

  63. Shubin, N.H., Daeschler, E.B., Jenkins, F.A. Jr., 2006. The pectoral fin of Tiktaalik roseae and the origin of the tetrapod limb. Nature 440, 764–771.

    Article  Google Scholar 

  64. Stark, R.J., Searls, R.L., 1973. A description of chick wing bud development and a model of limb morphogenesis. Dev. Biol. 33, 138–153.

    Article  Google Scholar 

  65. Tickle, C., 2003. Patterning systems-from one end of the limb to the other. Dev. Cell 4, 449–458.

    Article  Google Scholar 

  66. Turing, A.M., 1952. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37–72.

    Article  Google Scholar 

  67. Waddington, C.H., 1942. Canalization of development and the inheritance of acquired characters. Nature 150, 563–565.

    Article  Google Scholar 

  68. Wagner, A., 2005. Robustness and Evolvability in Living Systems. Princeton University Press, Princeton.

    Google Scholar 

  69. Williams, P.H., Hagemann, A., Gonzalez-Gaitan, M., Smith, J.C., 2004. Visualizing long-range movement of the morphogen Xnr2 in the Xenopus embryo. Curr. Biol. 14, 1916–1923.

    Article  Google Scholar 

  70. Zhu, A.J., Scott, M.P., 2004. Incredible journey: how do developmental signals travel through tissue? Genes Dev. 18, 2985–2997.

    Article  Google Scholar 

  71. Zykov, V., Engel, H., 2004. Dynamics of spiral waves under global feedback in excitable domains of different shapes. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 70, 016201.

    MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mark Alber.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alber, M., Glimm, T., Hentschel, H.G.E. et al. The Morphostatic Limit for a Model of Skeletal Pattern Formation in the Vertebrate Limb. Bull. Math. Biol. 70, 460–483 (2008). https://doi.org/10.1007/s11538-007-9264-3

Download citation

Keywords

  • Limb development
  • Chondrogenesis
  • Mesenchymal condensation
  • Reaction–diffusion model