Skip to main content
Log in

The Morphostatic Limit for a Model of Skeletal Pattern Formation in the Vertebrate Limb

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A recently proposed mathematical model of a “core” set of cellular and molecular interactions present in the developing vertebrate limb was shown to exhibit pattern-forming instabilities and limb skeleton-like patterns under certain restrictive conditions, suggesting that it may authentically represent the underlying embryonic process (Hentschel et al., Proc. R. Soc. B 271, 1713–1722, 2004). The model, an eight-equation system of partial differential equations, incorporates the behavior of mesenchymal cells as “reactors,” both participating in the generation of morphogen patterns and changing their state and position in response to them. The full system, which has smooth solutions that exist globally in time, is nonetheless highly complex and difficult to handle analytically or numerically. According to a recent classification of developmental mechanisms (Salazar-Ciudad et al., Development 130, 2027–2037, 2003), the limb model of Hentschel et al. is “morphodynamic,” since differentiation of new cell types occurs simultaneously with cell rearrangement. This contrasts with “morphostatic” mechanisms, in which cell identity becomes established independently of cell rearrangement. Under the hypothesis that development of some vertebrate limbs employs the core mechanism in a morphostatic fashion, we derive in an analytically rigorous fashion a pair of equations representing the spatiotemporal evolution of the morphogen fields under the assumption that cell differentiation relaxes faster than the evolution of the overall cell density (i.e., the morphostatic limit of the full system). This simple reaction–diffusion system is unique in having been derived analytically from a substantially more complex system involving multiple morphogens, extracellular matrix deposition, haptotaxis, and cell translocation. We identify regions in the parameter space of the reduced system where Turing-type pattern formation is possible, which we refer to as its “Turing space.” Obtained values of the parameters are used in numerical simulations of the reduced system, using a new Galerkin finite element method, in tissue domains with nonstandard geometry. The reduced system exhibits patterns of spots and stripes like those seen in developing limbs, indicating its potential utility in hybrid continuum-discrete stochastic modeling of limb development. Lastly, we discuss the possible role in limb evolution of selection for increasingly morphostatic developmental mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alber, M., Hentschel, H.G.E., Kazmierczak, B., Newman, S.A., 2005a. Existence of solutions to a new model of biological pattern formation. J. Math. Anal. Appl. 308, 175–194.

    Article  MATH  MathSciNet  Google Scholar 

  • Alber, M., Hentschel, H.G.E., Glimm, T., Kazmierczak, B., Newman, S.A., 2005b. Stability of n-dimensional patterns in a generalized Turing system: implications for biological pattern formation. Nonlinearity 18, 125–138.

    Article  MATH  MathSciNet  Google Scholar 

  • Alberch, P., Gale, E.A., 1983. Size dependence during the development of the amphibian foot. Colchicine-induced digital loss and reduction. J. Embryol. Exp. Morphol. 76, 177–197.

    Google Scholar 

  • Brockes, J.P., Kumar, A., 2005. Appendage regeneration in adult vertebrates and implications for regenerative medicine. Science 310, 1919–1923.

    Article  Google Scholar 

  • Chaturvedi, R., Huang, C., Kazmierczak, B., Schneider, T., Izaguirre, J.A., Newman, S.A., Glazier, J.A., Alber, M., 2005. On multiscale approaches to 3-dimensional modeling of morphogenesis. J. R. Soc. Interface 2, 237–253.

    Article  Google Scholar 

  • Cheng, Y., Shu, C.-W., 2007. A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput., posted on September 6, 2007, PII: S 0025-5718(07)02045-5, to appear in print.

  • Cickovski, T., Huang, C., Chaturvedi, R., Glimm, T., Hentschel, H.G.E., Alber, M., Glazier, J.A., Newman, S.A., Izaguirre, J.A., 2005. A framework for three-dimensional simulation of morphogenesis. IEEE/ACM Trans. Comput. Biol. Bioinf. 2, 273–288.

    Article  Google Scholar 

  • Coates, M.I., Clack, J.A., 1990. Polydactyly in the earliest known tetrapod limbs. Nature 347, 66–69.

    Article  Google Scholar 

  • Cockburn, B., Shu, C.-W., 1989. TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435.

    Article  MATH  MathSciNet  Google Scholar 

  • Cockburn, B., Shu, C.-W., 1991. The Runge–Kutta local projection P1-discontinuous Galerkin finite element method for scalar conservation laws. Math. Model. Numer. Anal. 25, 337–361.

    MATH  MathSciNet  Google Scholar 

  • Cockburn, B., Shu, C.-W., 1998a. The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224.

    Article  MATH  MathSciNet  Google Scholar 

  • Cockburn, B., Shu, C.-W., 1998b. The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463.

    Article  MATH  MathSciNet  Google Scholar 

  • Cockburn, B., Lin, S.-Y., Shu, C.-W., 1989. TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90–113.

    Article  MATH  MathSciNet  Google Scholar 

  • Cockburn, B., Hou, S., Shu, C.-W., 1990. The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comput. 54, 545–581.

    Article  MATH  MathSciNet  Google Scholar 

  • Cooke, J., Summerbell, D., 1981. Control of growth related to pattern specification in chick wing-bud mesenchyme. J. Embryol. Exp. Morphol. 65(Suppl.), 169–185.

    Google Scholar 

  • Crampin, E.J., Hackborn, W.W., Maini, P.K., 2002. Pattern formation in reaction–diffusion models with nonuniform domain growth. Bull. Math. Biol. 64, 747–769.

    Article  Google Scholar 

  • Cross, G.W., 1978. Three types of matrix instability. J. Linear Algebra Appl. 20, 253–263.

    Article  MATH  MathSciNet  Google Scholar 

  • Daeschler, E.B., Shubin, N.H., Jenkins, F.A. Jr., 2006. A Devonian tetrapod-like fish and the evolution of the tetrapod body plan. Nature 440, 757–763.

    Article  Google Scholar 

  • De Joussineau, C., Soule, J., Martin, M., Anguille, C., Montcourrier, P., Alexandre, D., 2003. Delta-promoted filopodia mediate long-range lateral inhibition in Drosophila. Nature 426, 555–559.

    Article  Google Scholar 

  • Endo, T., Bryant, S.V., Gardiner, D.M., 2004. A stepwise model system for limb regeneration. Dev. Biol. 270, 135–145.

    Article  Google Scholar 

  • Entchev, E.V., Schwabedissen, A., Gonzalez-Gaitan, M., 2000. Gradient formation of the TGF-β homolog Dpp. Cell 103, 981–991.

    Article  Google Scholar 

  • Filion, R.J., Popel, A.S., 2004. A reaction–diffusion model of basic fibroblast growth factor interactions with cell surface receptors. Ann. Biomed. Eng. 32, 645–663.

    Article  Google Scholar 

  • Forgacs, G., Newman, S.A., 2005. Biological Physics of the Developing Embryo. Cambridge University Press, Cambridge.

    Google Scholar 

  • Franssen, R.A., Marks, S., Wake, D., Shubin, N., 2005. Limb chondrogenesis of the seepage salamander, Desmognathus aeneus (Amphibia: Plethodontidae). J. Morphol. 265, 87–101.

    Article  Google Scholar 

  • Frenz, D.A., Jaikaria, N.S., Newman, S.A., 1989. The mechanism of precartilage mesenchymal condensation: a major role for interaction of the cell surface with the amino-terminal heparin-binding domain of fibronectin. Dev. Biol. 136, 97–103.

    Article  Google Scholar 

  • Fujimaki, R., Toyama, Y., Hozumi, N., Tezuka, K., 2006. Involvement of Notch signaling in initiation of prechondrogenic condensation and nodule formation in limb bud micromass cultures. J. Bone Miner. Metab. 24, 191–198.

    Article  Google Scholar 

  • Gehris, A.L., Stringa, E., Spina, J., Desmond, M.E., Tuan, R.S., Bennett, V.D., 1997. The region encoded by the alternatively spliced exon IIIA in mesenchymal fibronectin appears essential for chondrogenesis at the level of cellular condensation. Dev. Biol. 190, 191–205.

    Article  Google Scholar 

  • Hartmann, D., Miura, T., 2006. Modelling in vitro lung branching morphogenesis during development. J. Theor. Biol. 242, 862–872.

    Article  MathSciNet  Google Scholar 

  • Hentschel, H.G.E., Glimm, T., Glazier, J.A., Newman, S.A., 2004. Dynamical mechanisms for skeletal pattern formation in the vertebrate limb. Proc. R. Soc. B 271, 1713–1722.

    Article  Google Scholar 

  • Hinchliffe, J.R., 2002. Developmental basis of limb evolution. Int. J. Dev. Biol. 46, 835–845.

    Google Scholar 

  • Izaguirre, J.A., Chaturvedi, R., Huang, C., Cickovski, T., Coffland, J., Thomas, G., Forgacs, G., Alber, M., Hentschel, G., Newman, S.A., Glazier, J.A., 2004. CompuCell, a multi-model framework for simulation of morphogenesis. Bioinformatics 20, 1129–1137.

    Article  Google Scholar 

  • Johnson, C., 1987. Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Lander, A.D., 2007. Morpheus unbound: reimagining the morphogen gradient. Cell 128, 245–256.

    Article  Google Scholar 

  • Lander, A.D., Nie, Q., Wan, F.Y., 2002. Do morphogen gradients arise by diffusion? Dev. Cell 2, 785–796.

    Article  Google Scholar 

  • Leonard, C.M., Fuld, H.M., Frenz, D.A., Downie, S.A., Massagu, J., Newman, S.A., 1991. Role of transforming growth factor-β in chondrogenic pattern formation in the embryonic limb: stimulation of mesenchymal condensation and fibronectin gene expression by exogenous TGF-β and evidence for endogenous TGF-β-like activity. Dev. Biol. 145, 99–109.

    Article  Google Scholar 

  • Litingtung, Y., Dahn, R.D., Li, Y., Fallon, J.F., Chiang, C., 2002. Shh and Gli3 are dispensable for limb skeleton formation but regulate digit number and identity. Nature 418, 979–983.

    Article  Google Scholar 

  • Lyons, M.J., Harrison, L.G., 1992. Stripe selection: an intrinsic property of some pattern-forming models with nonlinear dynamics. Dev. Dyn. 195, 201–215.

    Google Scholar 

  • Martin, G.R., 1998. The roles of FGFs in the early development of vertebrate limbs. Genes Dev. 12, 1571–1586.

    Google Scholar 

  • Merkin, J.H., Sleeman, B.D., 2005. On the spread of morphogens. J. Math. Biol. 51, 1–17.

    Article  MATH  MathSciNet  Google Scholar 

  • Miura, T., Maini, P.K., 2004. Speed of pattern appearance in reaction–diffusion models: implications in the pattern formation of limb bud mesenchyme cells. Bull. Math. Biol. 66, 627–649.

    Article  MathSciNet  Google Scholar 

  • Miura, T., Shiota, K., 2000a. TGF-β2 acts as an activator molecule in reaction–diffusion model and is involved in cell sorting phenomenon in mouse limb micromass culture. Dev. Dyn. 217, 241–249.

    Article  Google Scholar 

  • Miura, T., Shiota, K., 2000b. Extracellular matrix environment influences chondrogenic pattern formation in limb bud micromass culture: experimental verification of theoretical models. Anat. Rec. 258, 100–107.

    Article  Google Scholar 

  • Miura, T., Shiota, K., 2002. Depletion of FGF acts as a lateral inhibitory factor in lung branching morphogenesis in vitro. Mech. Dev. 116, 29–38.

    Article  Google Scholar 

  • Miura, T., Shiota, K., Morriss-Kay, G., Maini, P.K., 2006. Mixed-mode pattern in Doublefoot mutant mouse limb-Turing reaction–diffusion model on a growing domain during limb development. J. Theor. Biol. 240, 562–573.

    Article  MathSciNet  Google Scholar 

  • Moftah, M.Z., Downie, S.A., Bronstein, N.B., Mezentseva, N., Pu, J., Maher, P.A., Newman, S.A., 2002. Ectodermal FGFs induce perinodular inhibition of limb chondrogenesis in vitro and in vivo via FGF receptor 2. Dev. Biol. 249, 270–282.

    Article  Google Scholar 

  • Murray, J.D., 1993. Mathematical Biology, 2nd edn. Springer, Berlin.

    MATH  Google Scholar 

  • Myerscough, M.R., Maini, P.K., Painter, K.J., 1998. Pattern formation in a generalized chemotactic model. Bull. Math. Biol. 60, 1–26.

    Article  MATH  Google Scholar 

  • Nelson, C.M., Vanduijn, M.M., Inman, J.L., Fletcher, D.A., Bissell, M.J., 2006. Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science 314, 298–300.

    Article  Google Scholar 

  • Newman, S.A., 1988. Lineage and pattern in the developing vertebrate limb. Trends Genet. 4, 329–332.

    Article  Google Scholar 

  • Newman, S.A., 2003. From physics to development: the evolution of morphogenetic mechanisms. In: G.B. Müller, S.A. Newman (Eds.), Origination of Organismal Form: Beyond the Gene in Developmental and Evolutionary Biology. MIT Press, Cambridge, pp. 221–239.

    Google Scholar 

  • Newman, S.A., Bhat, R., Activator-inhibitor mechanisms of vertebrate limb pattern formation. Birth Defects Res C Embryo Today, in press.

  • Newman, S.A., Frisch, H., 1979. Dynamics of skeletal pattern formation in developing chick limb. Science 205, 662–668.

    Article  Google Scholar 

  • Newman, S.A., Müller, G.B., 2005. Origination and innovation in the vertebrate limb skeleton: an epigenetic perspective. J. Exp. Zoolog. B Mol. Dev. Evol. 304, 593–609.

    Article  Google Scholar 

  • Nijhout, H.F., 2003. Gradients, diffusion and genes in pattern formation. In: G.B. Müller, S.A. Newman (Eds.), Origination of Organismal Form: Beyond the Gene in Developmental and Evolutionary Biology. MIT Press, Cambridge, pp. 165–181.

    Google Scholar 

  • Pao, C.V., 1992. Nonlinear Parabolic and Elliptic Equations. Plenum, New York.

    MATH  Google Scholar 

  • Rauch, E.M., Millonas, M.M., 2004. The role of trans-membrane signal transduction in Turing-type cellular pattern formation. J. Theor. Biol. 226, 401–407.

    Article  MathSciNet  Google Scholar 

  • Salazar-Ciudad, I., Jernvall, J., 2005. Graduality and innovation in the evolution of complex phenotypes: insights from development. J. Exp. Zool. B (Mol. Dev. Evol.) 304B, 619–631.

    Article  Google Scholar 

  • Salazar-Ciudad, I., Newman, S.A., Solé, R., 2001. Phenotypic and dynamical transitions in model genetic networks. I. Emergence of patterns and genotype-phenotype relationships. Evol. Dev. 3, 84–94.

    Article  Google Scholar 

  • Salazar-Ciudad, I., Jernvall, J., Newman, S.A., 2003. Mechanisms of pattern formation in development and evolution. Development 130, 2027–2037.

    Article  Google Scholar 

  • Salazar-Ciudad, I., 2006. On the origins of morphological disparity and its diverse developmental bases. Bioessays 28, 1112–1122.

    Article  Google Scholar 

  • Satnoianu, R.A., van den Driessche, P., 2005. Some remarks on matrix stability with application to Turing instability. J. Linear Algebra Appl. 398, 69–74.

    Article  MATH  Google Scholar 

  • Satnoianu, R.A., Menzinger, M., Maini, P.K., 2000. Turing instabilities in general systems. J. Math. Biol. 41, 493–512.

    Article  MATH  MathSciNet  Google Scholar 

  • Shubin, N.H., Daeschler, E.B., Jenkins, F.A. Jr., 2006. The pectoral fin of Tiktaalik roseae and the origin of the tetrapod limb. Nature 440, 764–771.

    Article  Google Scholar 

  • Stark, R.J., Searls, R.L., 1973. A description of chick wing bud development and a model of limb morphogenesis. Dev. Biol. 33, 138–153.

    Article  Google Scholar 

  • Tickle, C., 2003. Patterning systems-from one end of the limb to the other. Dev. Cell 4, 449–458.

    Article  Google Scholar 

  • Turing, A.M., 1952. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37–72.

    Article  Google Scholar 

  • Waddington, C.H., 1942. Canalization of development and the inheritance of acquired characters. Nature 150, 563–565.

    Article  Google Scholar 

  • Wagner, A., 2005. Robustness and Evolvability in Living Systems. Princeton University Press, Princeton.

    Google Scholar 

  • Williams, P.H., Hagemann, A., Gonzalez-Gaitan, M., Smith, J.C., 2004. Visualizing long-range movement of the morphogen Xnr2 in the Xenopus embryo. Curr. Biol. 14, 1916–1923.

    Article  Google Scholar 

  • Zhu, A.J., Scott, M.P., 2004. Incredible journey: how do developmental signals travel through tissue? Genes Dev. 18, 2985–2997.

    Article  Google Scholar 

  • Zykov, V., Engel, H., 2004. Dynamics of spiral waves under global feedback in excitable domains of different shapes. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 70, 016201.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Alber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alber, M., Glimm, T., Hentschel, H.G.E. et al. The Morphostatic Limit for a Model of Skeletal Pattern Formation in the Vertebrate Limb. Bull. Math. Biol. 70, 460–483 (2008). https://doi.org/10.1007/s11538-007-9264-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-007-9264-3

Keywords

Navigation