Bulletin of Mathematical Biology

, Volume 70, Issue 1, pp 21–44 | Cite as

Modeling T Cell Proliferation and Death in Vitro Based on Labeling Data: Generalizations of the Smith–Martin Cell Cycle Model

  • Ha Youn Lee
  • Alan S. PerelsonEmail author
Original Article


The fluorescent dye carboxyfluorescein diacetate succinimidyl ester (CFSE) classifies proliferating cell populations into groups according to the number of divisions each cell has undergone (i.e., its division class). The pulse labeling of cells with radioactive thymidine provides a means to determine the distribution of times of entry into the first cell division. We derive in analytic form the number of cells in each division class as a function of time based on the distribution of times to the first division. Choosing the distribution of time to the first division to fit thymidine labeling data for T cells stimulated in vitro under different concentrations of IL-2, we fit CFSE data to determine the dependence of T cell kinetic parameters on the concentration of IL-2. As the concentration of IL-2 increases, the average cell cycle time is shortened, the death rate of cells is decreased, and a higher fraction of cells is recruited into division. We also find that if the average cell cycle time increases with division class then the qualify of our fit to the data improves.


CFSE Thymidine T cell IL-2 Smith–Martin cell cycle model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asquith, B., Debacq, C., Florins, A., Gillet, N., Sanchez-Alcaraz, T., Mosley, A., Willems, L., 2006. Quantifying lymphocyte kinetics in vivo using carboxyfluorescein diacetate succinimidyl ester (CFSE). Proc. Roy. Soc. B 273, 1165–1171. CrossRefGoogle Scholar
  2. Bates, D.M., Watts, D.G., 1988. Nonlinear Regression Analysis and its Applications. Wiley, New York. zbMATHGoogle Scholar
  3. Bernard, S., Pujo-Menjouret, L., Mackey, M.C., 2003. Analysis of cell kinetics using a cell division marker: mathematical modeling of experimental data. Biophys. J. 84, 3414–2424. CrossRefGoogle Scholar
  4. Bird, J.J., Brown, D.R., Mullen, A.C. et al., 1998. Helper T cell differentiation is controlled by the cell cycle. Immunity 9, 229–237. CrossRefGoogle Scholar
  5. Brooks, R.F., Bennett, D.C., Smith, J.A., 1980. Mammalian cell cycles need two random transitions. Cell 19, 493–504. CrossRefGoogle Scholar
  6. Cantrell, D.A., Smith, K.A., 1984. The interleukin-2 T cell system: a new cell growth model. Science 224, 1312–1316. CrossRefGoogle Scholar
  7. Clyde, R.G., Bown, J.L., Hupp, T.R., Zhelev, N., Crawford, J.W., 2006. The role of modelling in identifying drug targets for diseases of the cell cycle. J. Roy. Soc. Interface 22, 617–627. CrossRefGoogle Scholar
  8. Cooper, S., 1982. The continuum model: statistical implications. J. Theor. Biol. 94, 783–800. CrossRefGoogle Scholar
  9. De Boer, R.J., Perelson, A.S., 2005. Estimating division and death rates from CFSE data. J. Comp. Appl. Math. 184, 140–164. zbMATHCrossRefGoogle Scholar
  10. De Boer, R.J., Ganusov, V.V., Milutinovic, D., Hodgkin, P.D., Perelson, A.S., 2006. Estimating lymphocyte division and death rates from CFSE data. Bull. Math. Biol. 68, 1011–1031. CrossRefGoogle Scholar
  11. Deenick, E.K., Hasbold, J., Hodgkin, P.D., 1999. Switching to IgG3, IgG2b, and IgA is division linked and independent, revealing a stochastic framework for describing differentiation. J. Immunol. 163, 4707–4714. Google Scholar
  12. Deenick, E.K., Gett, A.V., Hodgkin, P.D., 2003. Stochastic model of T cell proliferation: a calculus revealing IL-2 regulation of precursor frequencies, cell cycle time, and survival. J. Immunol. 170, 4963–2972. Google Scholar
  13. Efron, B., Tibshirani, R., 1986. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci. 1, 54–77. CrossRefMathSciNetGoogle Scholar
  14. Fazekas de St Groth, B., Smith, A.L., Koh, W.-P., Girgis, L., Cook, M.C., Bertolino, P., 1999. Carboxyfluorescein diacetate succinimidyl ester and the virgin lymphocyte: a marriage made in heaven. Immunol. Cell Biol. 77, 530–538. CrossRefGoogle Scholar
  15. Ganusov, V.V., Pilyugin, S.S., De Boer, R.J., Murali-Krishna, K., Ahmed, R., Antia, R., 2005. Quantifying cell turnover using CFSE data. J. Immunol. Methods 298, 183–200. CrossRefGoogle Scholar
  16. Gett, A.V., Hodgkin, P.D., 1998. Cell division regulates the T cell cytokine repertoire, revealing a mechanism underlying immune class regulation. Proc. Natl. Acad. Sci. USA 95, 9488–9493. CrossRefGoogle Scholar
  17. Gett, A.V., Hodgkin, P.D., 2000. A cellular calculus for signal integration by T cells. Nat. Immunol. 1, 239–244. CrossRefGoogle Scholar
  18. Hasbold, J.A., Lyons, A.B., Kehry, M.R., Hodgkin, P.D., 1998. Cell division number regulates IgG1 and IgE switching of B cells following stimulation by CD40 ligand and IL-4. Eur. J. Immunol. 28, 1040–1051. CrossRefGoogle Scholar
  19. Hodgkin, P.D., Go, N.F., Cupp, J.E., Howard, M., 1991. Interleukin-4 enhances anti-IgM stimulation of B cells by improving cell viability and by increasing the sensitivity of B cells by improving cell viability and by increasing the sensitivity of B cells to the anti-IgM signal. Cell. Immunol. 134, 14–30. CrossRefGoogle Scholar
  20. Hodgkin, P.D., Lee, J.H., Lyons, A.B., 1996. B cell differentiation and isotype switching is related to division cycle number. J. Exp. Med. 184, 277–281. CrossRefGoogle Scholar
  21. Hyrien, O., Zand, M.S., 2007. A mixture model with dependent observations for the analysis of CFSE-labeling experiments. J. Amer. Stat. Assoc., in press. Google Scholar
  22. Koch, A.L., 1999. The re-incarnation, re-interpretation and re-demise of the transition probability model. J. Biotech. 71, 143–156. CrossRefGoogle Scholar
  23. Leon, K., Faro, J., Carneiro, J., 2004. A general mathematical framework to model generation structure in a population of asynchronously dividing cells. J. Theor. Biol. 229, 455–476. CrossRefMathSciNetGoogle Scholar
  24. Lyons, A.B., 2000. Analyzing cell division in vivo and in vitro using flow cytometric measurement of CFSE dye dilution. J. Immunol. Methods 243, 147–154. CrossRefGoogle Scholar
  25. Marrack, P., Mitchell, T., Bender, J., Hilderman, D., Kedl, R., Teague, K., Kappler, J., 1998. T-cell survival. Immunol. Rev. 165, 279–285. CrossRefGoogle Scholar
  26. Nordon, R.E., Nakamura, M., Ramirez, C., Odell, R., 1999. Analysis of growth kinetics by division tracking. Immunol. Cell. Biol. 77, 523–529. CrossRefGoogle Scholar
  27. Novak, B., Tyson, J.J., 1995. Quantitative analysis of a molecular model of mitotic control in fission yeast. J. Theor. Biol. 173, 283–305. CrossRefGoogle Scholar
  28. Novak, B., Tyson, J.J., 1997. Modeling the control of DNA replication in fission yeast. Proc. Natl. Acad. Sci. USA 94, 9147–9152. CrossRefGoogle Scholar
  29. Novak, B., Tyson, J.J., 2004. A model for restriction point control of the mammalian cell cycle. J. Theor. Biol. 230, 563–579. CrossRefMathSciNetGoogle Scholar
  30. Pilyugin, S.S., Ganusov, V.V., Murali-Krishna, K., Ahmed, R., Antia, R., 2003. The rescaling method for quantifying the turnover of cell population. J. Theor. Biol. 225, 275–283. CrossRefMathSciNetGoogle Scholar
  31. Revy, P., Sospedra, M., Barbour, B., Trautmann, A., 2001. Functional antigen-independent synapses formed between T cells and dendritic cells. Nat. Immunol. 2, 925–931. CrossRefGoogle Scholar
  32. Smith, K.A., 1988. Interleukin-2: Inception, impact, and implications. Science 240, 1169–1176. CrossRefGoogle Scholar
  33. Smith, J.A., Martin, L., 1973. Do cells cycle?. Proc. Natl. Acad. Sci. USA 70, 1263–1267. CrossRefGoogle Scholar
  34. Smith, J.A., Laurence, D.J.R., Rudland, P.S., 1981. Limitations of cell kinetics in distinguishing cell cycle models. Nature 293, 648–650. CrossRefGoogle Scholar
  35. Tangye, S.G., Avery, D.T., Deenick, E.K., Hodgkin, P.D., 2003. Intrinsic differences in the proliferation of naive and memory human B cells as a mechanism for enhanced secondary immune response. J. Immunol. 170, 686–694. Google Scholar
  36. Tyrcha, J., 2001. Age-dependent cell cycle models. J. Theor. Biol. 213, 89–101. CrossRefMathSciNetGoogle Scholar
  37. Tyson, J.J., 1991. Modeling the cell division cycle: cdc2 and cycling interactions. Proc. Natl. Acad. Sci. USA 88, 7328–7332. CrossRefGoogle Scholar
  38. Vella, A.T., Steven, D., Potter, T.A., Kappler, J., Marrack, P., 1998. Cytokine-induced survival of activated T cells in vitro and in vivo. Proc. Natl. Acad. Sci. USA 95, 3810–3815. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2007

Authors and Affiliations

  1. 1.Theoretical Biology & BiophysicsLos Alamos National LaboratoryLos AlamosUSA
  2. 2.Department of Biostatistics and Computational Biology, School of Medicine and DentistryUniversity of RochesterRochesterUSA

Personalised recommendations