Skip to main content

Advertisement

Log in

Modeling T Cell Proliferation and Death in Vitro Based on Labeling Data: Generalizations of the Smith–Martin Cell Cycle Model

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The fluorescent dye carboxyfluorescein diacetate succinimidyl ester (CFSE) classifies proliferating cell populations into groups according to the number of divisions each cell has undergone (i.e., its division class). The pulse labeling of cells with radioactive thymidine provides a means to determine the distribution of times of entry into the first cell division. We derive in analytic form the number of cells in each division class as a function of time based on the distribution of times to the first division. Choosing the distribution of time to the first division to fit thymidine labeling data for T cells stimulated in vitro under different concentrations of IL-2, we fit CFSE data to determine the dependence of T cell kinetic parameters on the concentration of IL-2. As the concentration of IL-2 increases, the average cell cycle time is shortened, the death rate of cells is decreased, and a higher fraction of cells is recruited into division. We also find that if the average cell cycle time increases with division class then the qualify of our fit to the data improves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Asquith, B., Debacq, C., Florins, A., Gillet, N., Sanchez-Alcaraz, T., Mosley, A., Willems, L., 2006. Quantifying lymphocyte kinetics in vivo using carboxyfluorescein diacetate succinimidyl ester (CFSE). Proc. Roy. Soc. B 273, 1165–1171.

    Article  Google Scholar 

  • Bates, D.M., Watts, D.G., 1988. Nonlinear Regression Analysis and its Applications. Wiley, New York.

    MATH  Google Scholar 

  • Bernard, S., Pujo-Menjouret, L., Mackey, M.C., 2003. Analysis of cell kinetics using a cell division marker: mathematical modeling of experimental data. Biophys. J. 84, 3414–2424.

    Article  Google Scholar 

  • Bird, J.J., Brown, D.R., Mullen, A.C. et al., 1998. Helper T cell differentiation is controlled by the cell cycle. Immunity 9, 229–237.

    Article  Google Scholar 

  • Brooks, R.F., Bennett, D.C., Smith, J.A., 1980. Mammalian cell cycles need two random transitions. Cell 19, 493–504.

    Article  Google Scholar 

  • Cantrell, D.A., Smith, K.A., 1984. The interleukin-2 T cell system: a new cell growth model. Science 224, 1312–1316.

    Article  Google Scholar 

  • Clyde, R.G., Bown, J.L., Hupp, T.R., Zhelev, N., Crawford, J.W., 2006. The role of modelling in identifying drug targets for diseases of the cell cycle. J. Roy. Soc. Interface 22, 617–627.

    Article  Google Scholar 

  • Cooper, S., 1982. The continuum model: statistical implications. J. Theor. Biol. 94, 783–800.

    Article  Google Scholar 

  • De Boer, R.J., Perelson, A.S., 2005. Estimating division and death rates from CFSE data. J. Comp. Appl. Math. 184, 140–164.

    Article  MATH  Google Scholar 

  • De Boer, R.J., Ganusov, V.V., Milutinovic, D., Hodgkin, P.D., Perelson, A.S., 2006. Estimating lymphocyte division and death rates from CFSE data. Bull. Math. Biol. 68, 1011–1031.

    Article  Google Scholar 

  • Deenick, E.K., Hasbold, J., Hodgkin, P.D., 1999. Switching to IgG3, IgG2b, and IgA is division linked and independent, revealing a stochastic framework for describing differentiation. J. Immunol. 163, 4707–4714.

    Google Scholar 

  • Deenick, E.K., Gett, A.V., Hodgkin, P.D., 2003. Stochastic model of T cell proliferation: a calculus revealing IL-2 regulation of precursor frequencies, cell cycle time, and survival. J. Immunol. 170, 4963–2972.

    Google Scholar 

  • Efron, B., Tibshirani, R., 1986. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci. 1, 54–77.

    Article  MathSciNet  Google Scholar 

  • Fazekas de St Groth, B., Smith, A.L., Koh, W.-P., Girgis, L., Cook, M.C., Bertolino, P., 1999. Carboxyfluorescein diacetate succinimidyl ester and the virgin lymphocyte: a marriage made in heaven. Immunol. Cell Biol. 77, 530–538.

    Article  Google Scholar 

  • Ganusov, V.V., Pilyugin, S.S., De Boer, R.J., Murali-Krishna, K., Ahmed, R., Antia, R., 2005. Quantifying cell turnover using CFSE data. J. Immunol. Methods 298, 183–200.

    Article  Google Scholar 

  • Gett, A.V., Hodgkin, P.D., 1998. Cell division regulates the T cell cytokine repertoire, revealing a mechanism underlying immune class regulation. Proc. Natl. Acad. Sci. USA 95, 9488–9493.

    Article  Google Scholar 

  • Gett, A.V., Hodgkin, P.D., 2000. A cellular calculus for signal integration by T cells. Nat. Immunol. 1, 239–244.

    Article  Google Scholar 

  • Hasbold, J.A., Lyons, A.B., Kehry, M.R., Hodgkin, P.D., 1998. Cell division number regulates IgG1 and IgE switching of B cells following stimulation by CD40 ligand and IL-4. Eur. J. Immunol. 28, 1040–1051.

    Article  Google Scholar 

  • Hodgkin, P.D., Go, N.F., Cupp, J.E., Howard, M., 1991. Interleukin-4 enhances anti-IgM stimulation of B cells by improving cell viability and by increasing the sensitivity of B cells by improving cell viability and by increasing the sensitivity of B cells to the anti-IgM signal. Cell. Immunol. 134, 14–30.

    Article  Google Scholar 

  • Hodgkin, P.D., Lee, J.H., Lyons, A.B., 1996. B cell differentiation and isotype switching is related to division cycle number. J. Exp. Med. 184, 277–281.

    Article  Google Scholar 

  • Hyrien, O., Zand, M.S., 2007. A mixture model with dependent observations for the analysis of CFSE-labeling experiments. J. Amer. Stat. Assoc., in press.

  • Koch, A.L., 1999. The re-incarnation, re-interpretation and re-demise of the transition probability model. J. Biotech. 71, 143–156.

    Article  Google Scholar 

  • Leon, K., Faro, J., Carneiro, J., 2004. A general mathematical framework to model generation structure in a population of asynchronously dividing cells. J. Theor. Biol. 229, 455–476.

    Article  MathSciNet  Google Scholar 

  • Lyons, A.B., 2000. Analyzing cell division in vivo and in vitro using flow cytometric measurement of CFSE dye dilution. J. Immunol. Methods 243, 147–154.

    Article  Google Scholar 

  • Marrack, P., Mitchell, T., Bender, J., Hilderman, D., Kedl, R., Teague, K., Kappler, J., 1998. T-cell survival. Immunol. Rev. 165, 279–285.

    Article  Google Scholar 

  • Nordon, R.E., Nakamura, M., Ramirez, C., Odell, R., 1999. Analysis of growth kinetics by division tracking. Immunol. Cell. Biol. 77, 523–529.

    Article  Google Scholar 

  • Novak, B., Tyson, J.J., 1995. Quantitative analysis of a molecular model of mitotic control in fission yeast. J. Theor. Biol. 173, 283–305.

    Article  Google Scholar 

  • Novak, B., Tyson, J.J., 1997. Modeling the control of DNA replication in fission yeast. Proc. Natl. Acad. Sci. USA 94, 9147–9152.

    Article  Google Scholar 

  • Novak, B., Tyson, J.J., 2004. A model for restriction point control of the mammalian cell cycle. J. Theor. Biol. 230, 563–579.

    Article  MathSciNet  Google Scholar 

  • Pilyugin, S.S., Ganusov, V.V., Murali-Krishna, K., Ahmed, R., Antia, R., 2003. The rescaling method for quantifying the turnover of cell population. J. Theor. Biol. 225, 275–283.

    Article  MathSciNet  Google Scholar 

  • Revy, P., Sospedra, M., Barbour, B., Trautmann, A., 2001. Functional antigen-independent synapses formed between T cells and dendritic cells. Nat. Immunol. 2, 925–931.

    Article  Google Scholar 

  • Smith, K.A., 1988. Interleukin-2: Inception, impact, and implications. Science 240, 1169–1176.

    Article  Google Scholar 

  • Smith, J.A., Martin, L., 1973. Do cells cycle?. Proc. Natl. Acad. Sci. USA 70, 1263–1267.

    Article  Google Scholar 

  • Smith, J.A., Laurence, D.J.R., Rudland, P.S., 1981. Limitations of cell kinetics in distinguishing cell cycle models. Nature 293, 648–650.

    Article  Google Scholar 

  • Tangye, S.G., Avery, D.T., Deenick, E.K., Hodgkin, P.D., 2003. Intrinsic differences in the proliferation of naive and memory human B cells as a mechanism for enhanced secondary immune response. J. Immunol. 170, 686–694.

    Google Scholar 

  • Tyrcha, J., 2001. Age-dependent cell cycle models. J. Theor. Biol. 213, 89–101.

    Article  MathSciNet  Google Scholar 

  • Tyson, J.J., 1991. Modeling the cell division cycle: cdc2 and cycling interactions. Proc. Natl. Acad. Sci. USA 88, 7328–7332.

    Article  Google Scholar 

  • Vella, A.T., Steven, D., Potter, T.A., Kappler, J., Marrack, P., 1998. Cytokine-induced survival of activated T cells in vitro and in vivo. Proc. Natl. Acad. Sci. USA 95, 3810–3815.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan S. Perelson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, H.Y., Perelson, A.S. Modeling T Cell Proliferation and Death in Vitro Based on Labeling Data: Generalizations of the Smith–Martin Cell Cycle Model. Bull. Math. Biol. 70, 21–44 (2008). https://doi.org/10.1007/s11538-007-9239-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-007-9239-4

Keywords

Navigation