Skip to main content

Advertisement

Log in

Examining Emergence of Functional Gene Clustering in a Simulated Evolution

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Recent research suggests that rather than being random, gene order may be coupled with gene functionality. These findings may be explained by mechanisms that require physical proximity such as co-expression and co-regulation. Alternatively, they may be due to evolutionary-dynamics forces, as expressed in genetic drift or linkage disequilibrium.

This paper proposes a biologically plausible model for evolutionary development. Using the model, which includes natural selection and the development of gene networks and cellular organisms, the co-evolution of recombination rate and gene functionality is examined. The results presented here are compatible with previous biological findings showing that functionally related genes are clustered.

These results imply that evolutionary pressure in a complex environment is sufficient for the emergence of gene order that is coupled with functionality. They shed further light on the mechanisms that may cause such gene clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bäck, T., Schwefel, H.P., 1993. An overview of evolutionary algorithms for parameter optimization. Evol. Comput. 1, 1–3.

    Article  Google Scholar 

  • Barton, N.H., 1995. A general model for the evolution of recombination. Genet. Res. 65, 123–45.

    Article  Google Scholar 

  • Blumenthal, T., Gleason, K.S., 2003. Caenorhabditis elegans operons: form and function. Nat. Rev. Genet. 4, 112–20.

    Article  Google Scholar 

  • Bodmer, W.F., Parsons, P.A., 1962. Linkage and recombination in evolution. Adv. Genet. 11, 1–00.

    Article  Google Scholar 

  • Charlesworth, B., 1976. Recombination modification in a fluctuating environment. Genetics 83, 181–95.

    MathSciNet  Google Scholar 

  • Charlesworth, D., Charlesworth, B., 1975. Theoretical genetics of Batesian mimicry II. Evolution of supergenes. J. Theor. Biol. 55, 305–24.

    Article  Google Scholar 

  • Cho, R.J., Campbell, M.J., Winzeler, E.A., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, T.G., Gabrielian, A.E., Landsman, D., Lockhart, D.J., Davis, R.W., 1998. A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell 2, 65–3.

    Article  Google Scholar 

  • Cohen, B.A., Mitra, R.D., Hughes, J.D., Church, G.M., 2000. A computational analysis of whole-genome expression data reveals chromosomal domains of gene expression. Nat. Genet. 26, 183–86.

    Article  Google Scholar 

  • Cooper, D.N., 1999. Human Gene Evolution Oxford. Bios Scientific Publishers, San Diego.

    Google Scholar 

  • de Laat, W., Grosveld, F., 2003. Spatial organization of gene expression: the active chromatin hub. Chromosom. Res. 11, 447–59.

    Article  Google Scholar 

  • Dellaert, F., Beer, R.D., 1994. Co-evolving body and brain in autonomous agents using a developmental model. Technical Report CES-94-16, Cleveland, OH 44106.

  • Eberharter, A., Becker, P.B., 2002. Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Rep. 3, 224–29.

    Article  Google Scholar 

  • Eggenberger, P., 1997. Evolving morphologies of simulated 3d organisms based on differential gene expression. In: Husbands, P., Harvey, I. (Eds.), The 4th European Conference on Artificial Life (ECAL97). MIT Press, Cambridge.

    Google Scholar 

  • Felsenstein, J., Yokoyama, S., 1976. The evolutionary advantage of recombination. II. Individual selection for recombination. Genet. 83, 845–59.

    Google Scholar 

  • Fischer, G., Rocha, E.P.C., Brunet, F.G., Vergassola, M., Dujon, B., 2006. Highly variable rates of genome rearrangements between Hemiascomycetous yeast lineages. PLoS Genet. 2(3).

  • Fisher, R.A., 1930. The Genetical Theory of Natural Selection. Oxford University Press, London.

    MATH  Google Scholar 

  • Florens, L., Washburn, M.P., Raine, J.D., Anthony, R.M., Grainger, M., Haynes, J.D., Moch, J.K., Muster, N., Sacci, J.B., Tabb, D.L., Witney, A.A., Wolters, D., Wu, Y., Gardner, M.J., Holder, A.A., Sinden, R.E., Yates, J.R., Carucci, D.J., 2002. A proteomic view of the Plasmodium falciparum life cycle. Nature 419, 520–26.

    Article  Google Scholar 

  • Fouss, F., Pirotte, A., Saerens, M., 2005. A novel way of computing similarities between nodes of a graph, with application to collaborative recommendation. The 2005 IEEE/WIC/ACM International Conference on Web Intelligence, pp. 550–56.

  • Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison–Wesley, Reading.

    MATH  Google Scholar 

  • Gotoh, O., 1982. An improved algorithm for matching biological sequences. J. Mol. Biol. 162, 705–08.

    Article  Google Scholar 

  • Gruau, F., 1992. Genetic synthesis of Boolean neural networks with a cell rewriting developmental process. In: Schaffer, J.D. (Ed.), COGANN-92: International Workshop on Combinations of Genetic Algorithms and Neural Networks., IEEE Computer Society Press, Baltimore, MD, USA, pp. 55–4.

  • Haldane, J.B.S., 1919. The combination of linkage values and the calculation of distances between the loci of linked factors. J. Genet. 8, 299–09.

    Article  Google Scholar 

  • Hertz, J.A., Palmer, R.G., Krogh, A.S., 1991. Introduction to the Theory of Neural Computation. Addison–Wesley, Reading.

    Google Scholar 

  • Hill, W.G., Robertson, A., 1966. The effect of linkage on limits to artificial selection. Genet. Res. 8, 269–94.

    Article  Google Scholar 

  • Holland, J.H., 1975. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press, Ann Arbor.

    Google Scholar 

  • Hopfield, J.J., 1984. Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. USA 81, 3088–092.

    Article  Google Scholar 

  • Hughes, A.L., da Silva, J., Friedman, R., 2001. Ancient genome duplications did not structure the human hox-bearing chromosomes. Gen. Res. 11, 771–80.

    Article  Google Scholar 

  • Hurst, L.D., Williams, E.J., Pal, C., 2002. Natural selection promotes the conservation of linkage of co-expressed genes. Trends Genet. 18, 604–06.

    Article  Google Scholar 

  • Hurst, L.D., Pal, C., Lercher, M.J., 2004. The evolutionary dynamics of eukaryotic gene order. Nat. Rev. Genet. 5, 299–10.

    Article  Google Scholar 

  • Hurst, L.D., Lercher, M.J., 2005. Unusual linkage patterns of ligands and their cognate receptors indicate a novel reason for non-random gene order in the human genome. BMC Evol. Biol. 5, 62.

    Article  Google Scholar 

  • Kamath, R.S., Fraser, A.G., Dong, Y., Poulin, G., Durbin, R., Gotta, M., Kanapin, A., Le Bot, N., Moreno, S., Sohrmann, M., Welchman, D.P., Zipperlen, P., Ahringer, J., 2003. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–37.

    Article  Google Scholar 

  • Keller, N.P., Hohn, T.M., 1997. Metabolic pathway gene clusters in filamentous fungi. Fungal. Genet. Biol. 21, 17–9.

    Article  Google Scholar 

  • Khavkin, E., Coe, E.H., 1997. Mapped genomic locations for developmental functions and QTLs reflect concerted groups in maize (<SMALL>Zea mays</SMALL> L.). TAG Theor. Appl. Gen. 95, 343–52.

    Article  Google Scholar 

  • Kitano, H., 1990. Designing neural networks using genetic algorithms with graph generation system. Complex Syst. 4, 461–76.

    MATH  Google Scholar 

  • Kondrashov, A.S., 1988. Deleterious mutations and the evolution of sexual reproduction. Nature 336, 435–40.

    Article  Google Scholar 

  • Lawrence, J.G., Roth, J.R., 1996. Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetics 143, 1843–860.

    Google Scholar 

  • Lee, J.M., Sonnhammer, E.L., 2003. Genomic gene clustering analysis of pathways in eukaryotes. Genom. Res. 13, 875–82.

    Article  Google Scholar 

  • Lercher, M.J., Urrutia, A.O., Hurst, L.D., 2002. Clustering of housekeeping genes provides a unified model of gene order in the human genome. Nat. Genet. 31, 180–83.

    Article  Google Scholar 

  • Lercher, M.J., Blumenthal, T., Hurst, L.D., 2003. Coexpression of neighboring genes in Caenorhabditis elegans is mostly due to operons and duplicate genes. Genome Res. 13, 238–43.

    Article  Google Scholar 

  • McAdams, H.H., Arkin, A., 1998. Simulation of prokaryotic genetic circuits. Annu. Rev. Biophys. Biomol. Struct. 27, 199–24.

    Article  Google Scholar 

  • Megy, K., Audic, S., Claverie, J.M., 2003. Positional clustering of differentially expressed genes on human chromosomes 20, 21 and 22. Genom. Biol. 4, 1.

    Article  Google Scholar 

  • Mjolsness, E., Sharp, D.H., Reinitz, J., 1991. A connectionist model of development. J. Theor. Biol. 152, 429–53.

    Article  Google Scholar 

  • Nei, M., 1967. Modification of linkage intensity by natural selection. Genetics 57, 625–41.

    MathSciNet  Google Scholar 

  • Nei, M., 1968. Evolutionary change of linkage intensity. Nature 218, 1160–161.

    Article  Google Scholar 

  • Nei, M., 1969. Linkage modifications and sex difference in recombination. Genetics 63, 681–99.

    Google Scholar 

  • Otto, S.P., Lenormand, T., 2002. Resolving the paradox of sex and recombination. Nat. Rev. Genet. 3, 252–61.

    Article  Google Scholar 

  • Pal, C., Hurst, L.D., 2003. Evidence for co-evolution of gene order and recombination rate. Nat. Genet. 33, 392–95.

    Article  Google Scholar 

  • Pal, C., Hurst, L.D., 2004. Evidence against the selfish operon theory. Trends Genet. 20, 232–34.

    Article  Google Scholar 

  • Papp, B., Pal, C., Hurst, L.D., 2003. Evolution of cis-regulatory elements in duplicated genes of yeast. Trends Genet. 19, 417–22.

    Article  Google Scholar 

  • Qi, X., Bakht, S., Leggett, M., Maxwell, C., Melton, R., Osbourn, A., 2004. A gene cluster for secondary metabolism in oat: implications for the evolution of metabolic diversity in plants. Proc. Natl. Acad. Sci. USA 101, 8233–238.

    Article  Google Scholar 

  • Richard, K.B., 1993. Interposing an Ontogenetic Model Between Genetic Algorithms and Neural Networks. Advances in Neural Information Processing Systems, vol. 5. NIPS Conference. Kaufmann, Los Altos.

    Google Scholar 

  • Roy, P.J., Stuart, J.M., Lund, J., Kim, S.K., 2002. Chromosomal clustering of muscle-expressed genes in Caenorhabditis elegans. Nature 418, 975–79.

    Google Scholar 

  • Rust, A.G., 1998. Developmental self Organization in Artificial Neural Networks, Ph.D. University of Hertfordshire.

  • Rust, A.G., Adams, R., Bolouri, H., 2000. Evolutionary neural topiary: growing and sculpting artificial neurons to order. In: M.A., B., et al.. (Eds.), Artificial Life VII: The 7th International Conference. MIT Press, Cambridge.

    Google Scholar 

  • Shopland, L.S., Johnson, C.V., Byron, M., McNeil, J., Lawrence, J.B., 2003. Clustering of multiple specific genes and gene-rich R-bands around SC-35 domains: evidence for local euchromatic neighborhoods. J. Cell. Biol. 162, 981–90.

    Article  Google Scholar 

  • Sims, K., 1994a. Evolving virtual creatures. Comput. Graph. 28, 15–2.

    Article  Google Scholar 

  • Sims, K., 1994b. Evolving 3D morphology and behavior by competition. Artif. Life 1, 535–72.

    Article  Google Scholar 

  • Singer, G.A., Lloyd, A.T., Huminiecki, L.B., Wolfe, K.H., 2005. Clusters of co-expressed genes in mammalian genomes are conserved by natural selection. Mol. Biol. Evol. 22, 767–75.

    Article  Google Scholar 

  • Stefano, N., Domenico, P., 1995. Evolving artificial neural networks that develop in time. In: Proceedings of the Third European Conference on Advances in Artificial Life. Springer, Berlin.

    Google Scholar 

  • Strahl, B.D., Allis, C.D., 2000. The language of covalent histone modifications. Nature 403, 41–5.

    Article  Google Scholar 

  • Thomas, B., ck, Hans-Paul, S., 1993. An overview of evolutionary algorithms for parameter optimization. Evol. Comput. 1, 1–3.

    Article  Google Scholar 

  • Williams, E.J., Bowles, D.J., 2004. Coexpression of neighboring genes in the genome of Arabidopsis thaliana. Genom. Res. 14, 1060–067.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uri Yerushalmi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yerushalmi, U., Teicher, M. Examining Emergence of Functional Gene Clustering in a Simulated Evolution. Bull. Math. Biol. 69, 2261–2280 (2007). https://doi.org/10.1007/s11538-007-9219-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-007-9219-8

Keywords

Navigation