Skip to main content

A New Method for Calculating Net Reproductive Rate from Graph Reduction with Applications to the Control of Invasive Species

Abstract

Matrix models are widely used for demographic analysis of age and stage structured biological populations. Dynamic properties of the model can be summarized by the net reproductive rate R 0. In this paper, we introduce a new method to calculate and analyze the net reproductive rate directly from the life cycle graph of the matrix. We show, with examples, how our method of analysis of R 0 can be used in the design of strategies for controlling invasive species.

This is a preview of subscription content, access via your institution.

References

  1. Caswell, H., 1982a. Optimal life histories and the age-specific costs of reproduction. J. Theor. Biol. 98(3), 519–529.

    Article  Google Scholar 

  2. Caswell, H., 1982b. Optimal life histories and the maximization of reproductive value—a general theorem for complex life-cycles. Ecology 63(5), 1218–1222.

    Article  Google Scholar 

  3. Caswell, H., 1984. Optimal life histories and age-specific costs of reproduction—2 extensions. J. Theor. Biol. 107(1), 169–172.

    Article  Google Scholar 

  4. Caswell, H., 2001. Matrix population models: construction, analysis, and interpretation, 2nd edn. Sinauer Associates.

  5. Chen, W., 1976. Applied graph theory; graphs and electrical networks, 2nd edn. North-Holland Pub. Co.

  6. Cushing, J., Zhou, Y., 1994. The net reproductive value and stability in matrix population models. Nat. Res. Model. 8(4), 297–333.

    Google Scholar 

  7. Dinnetz, P., Nilsson, T., 2002. Population viability analysis of Saxifraga cotyledon, a perennial plant with semelparous rosettes. Plant Ecol. 159(1), 61–71.

    Article  Google Scholar 

  8. Hinz, H., 1996. Scentless chamomile, a target weed for biological control in Canada: Factors influencing seedling establishment. In: Proceedings of the IX International Symposium on Biological Control of Weeds, pp. 187–192.

  9. Hinz, H., McClay, A., 2000. Ten years of scentless chamomile: Prospects for the biological control of a weed of cultivated land. In: Proceedings of the X International Symposium on Biological Control of Weeds, pp. 537–550.

  10. Horn, R., Johnson, C., 1985. Matrix Analysis. Cambridge University Press.

  11. Hubbell, S., Werner, P., 1979. Measuring the intrinsic rate of increase of populations with heterogeneous life histories. Am. Nat. 113(2), 277–293.

    Article  MathSciNet  Google Scholar 

  12. Krivan, V., Havelka, J., Feb 2000. Leslie model for predatory gall-midge population. Ecol. Modell. 126, 73–77.

    Article  Google Scholar 

  13. Lewis, E., 1977. Network models in population biology. Springer-Verlag.

  14. Li, C., Schneider, H., 2002. Applications of Perron-Frobenius theory to population dynamics. J. Math. Biol. 44(5), 450–462.

    MATH  Article  MathSciNet  Google Scholar 

  15. Mason, S., Zimmermann, H., 1960. Electronic circuits, signals, and systems. Wiley.

  16. Parker, I., 2000. Invasion dynamics of Cytisus scoparius: a matrix model approach. Ecol. Appl. 10(3), 726–743.

    Article  Google Scholar 

  17. Shea, K., Kelly, D., 1998. Estimating biocontrol agent impact with matrix models: Carduus nutans in New Zealand. Ecol. Appl. 8(3), 824–832.

    Article  Google Scholar 

  18. van den Driessche, P., Watmough, J., Nov 2002. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48.

    MATH  Article  MathSciNet  Google Scholar 

  19. Werner, P., Caswell, H., 1977. Population-growth rates and age versus stage-distribution models for teasel (Dipsacus sylvestris Huds). Ecology 58(5), 1103–1111.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. de-Camino-Beck.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

de-Camino-Beck, T., Lewis, M.A. A New Method for Calculating Net Reproductive Rate from Graph Reduction with Applications to the Control of Invasive Species. Bull. Math. Biol. 69, 1341–1354 (2007). https://doi.org/10.1007/s11538-006-9162-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-006-9162-0

Keywords

  • Matrix models
  • Net reproductive rate
  • Invasion
  • Biological control