Advertisement

Bulletin of Mathematical Biology

, Volume 69, Issue 2, pp 539–562 | Cite as

Modeling Vortex Swarming In Daphnia

  • Robert Mach
  • Frank SchweitzerEmail author
Original Article

Abstract

Based on experimental observations in Daphnia, we introduce an agent-based model for the motion of single and swarms of animals. Each agent is described by a stochastic equation that also considers the conditions for active biological motion. An environmental potential further reflects local conditions for Daphnia, such as attraction to light sources. This model is sufficient to describe the observed cycling behavior of single Daphnia. To simulate vortex swarming of many Daphnia, i.e. the collective rotation of the swarm in one direction, we extend the model by considering avoidance of collisions. Two different ansatzes to model such a behavior are developed and compared. By means of computer simulations of a multi-agent system we show that local avoidance—as a special form of asymmetric repulsion between animals—leads to the emergence of a vortex swarm. The transition from uncorrelated rotation of single agents to the vortex swarming as a function of the swarm size is investigated. Eventually, some evidence of avoidance behavior in Daphnia is provided by comparing experimental and simulation results for two animals.

Keywords

Active motion Swarming Zooplankton Brownian agents 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben-Jacob, E., 2003. Bacterial self-organization: co-enhancement of complexification and adaptability in a dynamic environment. Phil. Trans. R. Soc. Lond. A 361, 1283–1312.CrossRefMathSciNetGoogle Scholar
  2. Caraco, T.S., Martindale, S., Pulliam, H.R., 1980. Avian flocking in the presence of a predator. Nature 285, 400–401.CrossRefGoogle Scholar
  3. Couzin, I., Franks, N., 2003. Self-organized lane formation and optimized traffic flow in army ants. Proc. R. Soc. London Ser. B 270, 139–146.Google Scholar
  4. Couzin, I., Krause, J., James, R., Ruxton, G., Franks, N.R., 2002. Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218, 1–11.CrossRefMathSciNetGoogle Scholar
  5. Couzin, I.D., Krause, J., 2001. The social organisation of fish schools. Advances in Ethology 36(64).Google Scholar
  6. Couzin, I.D., Krause, J., Franks, N.R., Levin, S.A., 2005. Effective leadership and decision making in animal groups on the move. Nature 433, 513–516.CrossRefGoogle Scholar
  7. Czirok, A., Ben-Jacob, E., Cohen, I., Vicsek, T., 1996. Formation of complex bacterial colonies via self-generated vortices. Phys. Rev. E 54(2), 1791–1801.CrossRefGoogle Scholar
  8. Czirok, A., Vicsek, T., 2000. Collective behavior of interacting self-propelled particles. Physica A 281, 17–29.CrossRefGoogle Scholar
  9. Deutsch, A. (1999). Principles of morphogenetic motion: swarming and aggregation viewed as self-organization phenomena. J. Biosci. 24(1), 115–120.CrossRefGoogle Scholar
  10. Ebeling, W., Schweitzer, F., 2001. Swarms of Particle Agents with Harmonic Interactions. Theory in Biosciences 120(3–4), 207–224.Google Scholar
  11. Ebeling, W., Schweitzer, F., 2003. Self-Organization, Active Brownian Dynamics, and Biological Applications. Nova Acta Leopoldina NF 88(332), 169–188.MathSciNetGoogle Scholar
  12. Ebeling, W., Schweitzer, F., Tilch, B., 1999. Active brownian particles with energy depots modelling animal mobility. BioSystems 49, 17–29.CrossRefGoogle Scholar
  13. Erdmann, U., E.W., Mikhailov, A.S., 2005. Noise-induced transition from translational to rotational motion of swarms. Phys. Rev. E 71(051904).Google Scholar
  14. Erdmann, U., Ebeling, W., 2003. Collective motion of brownian particles with hydrodynamic interactions. Fluctuation Noise Lett. 3, L145–L154.CrossRefGoogle Scholar
  15. Erdmann, U., Ebeling, W., Schimansky-Geier, L., Schweitzer, F., 2000. Brownian particles far from equilibrium. Eur. Phys. J. B 15(1), 105–113.CrossRefGoogle Scholar
  16. Flierl, G., Grünbaum, D., Levin, S., Olson, D., 1999. From individuals to aggregations: the interplay between behavior and physics. J. Theoret. Biol. 196, 397–454.CrossRefGoogle Scholar
  17. Grégoire G., Chaté, H., 2004. Onset of collective and cohesive motion. Phys. Rev. Lett. 92, 025702.CrossRefGoogle Scholar
  18. Grégoire, G., Chaté, H., Tu, Y., 2001. Active and passive particles: Modeling beads in a bacterial bath. Phys. Rev. E 64, 011902.CrossRefGoogle Scholar
  19. Gries, T., Jöhnk, K., Fields, D., Strickler, J., 1999. Size and structure of ‘footprints’ produced by Daphnia: impact of animal size and density gradients. J. Plankton Res. 21, 509–523.CrossRefGoogle Scholar
  20. Grünbaum, D., Okubo, A., 1994. Modelling Social Animal Aggregation. In: Levin, S.A. (Ed.), Frontiers in Theoretical Biology. Springer, New York, vol. 100 of Lecture Notes in Biomathematics.Google Scholar
  21. Hall, S.J., Wardle, C.S., MacLennan, D.N., 1986. Predator evasion in a fish school: test of a model of the fountain effect. Mar. Biol. 91, 143–148.CrossRefGoogle Scholar
  22. Helbing, D., Schweitzer, F., Keltsch, J., Molnár, P., 1997. Active walker model for the formation of human and animal trail systems. Phys. Rev. E 56(3), 2527–2539.CrossRefGoogle Scholar
  23. Huth, A., Wissel, C., 1992. The simulation of the movement of fish schools. J. Theor. Biol. 156, 365–385.CrossRefGoogle Scholar
  24. Huth, A., Wissel, C., 1994. The simulation of fish schools in comparison with experimental data. Ecological Modelling 75–76, 135–146.Google Scholar
  25. Jakobsen, P., Johnsen, G., 1987. Behavioral response of the water flea Daphnia pulex to a gradient in food concentration. Anim. Behav. 35, 1891–1895.CrossRefGoogle Scholar
  26. Jakobsen, P.J., Birkeland, K., Johnsen, G.H., 1994. Swarm location in zooplankton as an anti-predator defense mechanism. Anim. Behav. 47, 175–178.CrossRefGoogle Scholar
  27. Jensen, K., 2000. Gregariousness in Daphnia: significance of food distribution and predator evasion. University Bergen, Dep. of Zoology, Norway, Phd. Thesis.Google Scholar
  28. Kleiven O., Larsson, P., Hobæk, 1996. Direct distributional response in Daphnia pulex to a predatorkairomone. J. Plankton Res. 18, 1341–1348.Google Scholar
  29. Kunz, H., Hemelrijk, C.K., 2003. Artificial fish schools: collective effects of school size, body size, and body form. Artificial Life 9, 237–253.CrossRefGoogle Scholar
  30. Kvam, O., Kleiven, O., 1995. Diel horizontal migration and swarm formation in Daphnia in response to Chaoborus. Hydrobiol. 307, 177–184.CrossRefGoogle Scholar
  31. Larsson, P., 1997. Ideal free distribution in Daphnia? Are daphnids able to consider both the food patch quality and the position of competitors? Hydrobiologia 360, 143–152.Google Scholar
  32. Larsson, P., Kleiven, O., 1995. Food search and swimming speed in Daphnia. In: Lenz, P.H., Hartline, D., Purcell, J., Macmillan, D. (Eds.), Zooplankton: Sensory Ecology and Physiology. Gordon and Breach, pp. 375–387.Google Scholar
  33. Levine, H., Rappel, W.-J., Cohen, I., 2000. Self-Organization in Systems of Self-Propelled Particles. Phys. Rev. E 63, R017101.CrossRefGoogle Scholar
  34. Lobel, P.S., Randall, J.E., 1986. Swarming behavior of the hyperiid amphipod Anchylomera blossevilli. J. Plankton Res. 8, 253–262.CrossRefGoogle Scholar
  35. Mikhailov, A., Zanette, D.H., 1999. Noise-induced breakdown of coherent collective motion in swarms. Phys. Rev. E 60, 4571–4575.CrossRefGoogle Scholar
  36. Molnár, P., 1995. Modellierung und Simulation der Dynamik von Fussgängerströmen. Aachen: Shaker. ISBN: 3-8265-1191-3.Google Scholar
  37. Øien, A.H., 2004. Daphnicle dynamics based on kinetic theory: an analogue-modelling of swarming and behaviour of Daphnia. Bull. Math. Biol. 66, 1–46.CrossRefMathSciNetGoogle Scholar
  38. Okubo, A., Levin, S., 2002. Diffusion and Ecological Problems. New York: Springer.zbMATHGoogle Scholar
  39. Ordemann, A., 2002. Vortex-Swarming of the Zooplankton Daphnia. Biol. Physicist 2(3), 5–10.Google Scholar
  40. Ordemann, A., Balazsi, G., Moss, F., 2003a. Motions of daphnia in a light field: random walks with a zooplankton. Nova Acta Leopoldina 88(332), 87–103.Google Scholar
  41. Ordemann, A., Balazsi, G., Moss, F., 2003b. Pattern formation and stochastic motions of the zooplankton Daphnia in light fields. Physica A 325, 260–266.CrossRefGoogle Scholar
  42. Ordemann, A., Garcia, R., Moss, F., 2004. Avoidance maneuvers observed in Daphnia. (unpublished).Google Scholar
  43. Parrish, J., Edelstein-Keshet, L., 1999. Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science 284, 99–101.CrossRefGoogle Scholar
  44. Parrish, J.K., Hamner, W. (eds.), 1997. Animal Groups in Three Dimensions. Cambridge University Press, Cambridge.Google Scholar
  45. Parrish, J.K., Viscido, S.V., Grünbaum, D., 2002. Self-organized fish schools: An examination of emergent properties. Biol. Bull. 202, 296–305.CrossRefGoogle Scholar
  46. Partridge, B.L., 1982. The structure and function of fish schools. Scientific American 246, 90–99.CrossRefGoogle Scholar
  47. Schweitzer, F., 2003. Brownian agents and active particles. Collective dynamics in the natural and social sciences, Springer Series in Synergetics.Google Scholar
  48. Schweitzer, F., Ebeling, W., Tilch, B., 1998. Complex motion of Brownian particles with energy depots. Phys. Rev. Lett. 80(23), 5044–5047.CrossRefGoogle Scholar
  49. Schweitzer, F., Ebeling, W., Tilch, B., 2001. Statistical mechanics of canonical-dissipative systems and applications to swarm dynamics. Phys. Rev. E 64(2), 021110–1–021110–12.Google Scholar
  50. Schweitzer, F., Lao, K., Family, F., 1997. Active random walkers simulate trunk trail formation by ants. BioSystems 41, 153–166.CrossRefGoogle Scholar
  51. Stevens, A., Schweitzer, F., 1997. Aggregation induced by diffusing and nondiffusing media. In: Alt, W., Deutsch, A., Dunn, G. (Eds.), Dynamics of Cell and Tissue Motion. Birkhäuser, Basel, pp. 183–192.Google Scholar
  52. Tilch, B., Schweitzer, F., Ebeling, W., 1999. Directed motion of brownian particles with internal energy depot. Physica A 273(3–4), 294–314.CrossRefGoogle Scholar
  53. Toner, J., Tu, Y., 1995. Long-range order in a two-dimensional dynamical XY model: How birds fly together. Phys. Rev. Lett. 75(23), 4326–4329.CrossRefGoogle Scholar
  54. Vicsek, T., Czirok, A., Ben-Jacob, E., Cohen, I., Shochet, O., 1995. Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229.CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2006

Authors and Affiliations

  1. 1.ETH ZurichChair of Systems DesignZurichSwitzerland

Personalised recommendations