Skip to main content
Log in

Bulletin of Mathematical Biology Special Issue

A Tribute to Lee Segel

  • FOREWORD
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Barrass, I., Crampin, E.J., Maini, P.K., 2006. Mode transitions in a model reaction-diffusion system driven by domain growth and noise. Bull. Math. Biol. 68:5.

    MathSciNet  Google Scholar 

  • Cohen, I.R., 2006. Informational landscapes in art, science, and evolution. Bull. Math. Biol. 68:5.

    Google Scholar 

  • Cytrynbaum, E.N., Rodionov, V., Mogilner, A., 2006. Nonlocal mechanisan of self-organization and centering of microtubule asters. Bull. Math. Biol. 68:5.

    MathSciNet  Google Scholar 

  • de Boer, R.J., Ganusov, V.V., Milutinovic, D., Hodgkin, P.D., Perelson, A.S., 2006. Estimating lymphocyte division and death rates from CFSE data. Bull. Math. Biol. 68:5.

    Google Scholar 

  • Goldbeter, A., 2006. Oscillations and waves of cyclic AMP in Dictyostelium: A prototype for spatio-temporal organization and pulsatile intercellular communication. Bull. Math. Biol. 68:5.

    MathSciNet  Google Scholar 

  • He, X., Coombs, D., Myszka, D.G., Goldstein, B., 2006. A theoretical and experimental study of competition between solution and surface receptors for ligand in a biacore flow cell. Bull. Math. Biol. 68:5.

    Google Scholar 

  • Keller, E.F., 2006. Science as a medium for friendship: How the Keller-Segel models came about. Bull. Math. Biol. 68:5.

    Google Scholar 

  • Khanin, R., Parnas, I., Parnas, H., 2006. On the feedback between theory and experiment in elucidating the molecular mechanisms underlying neurotransmitter release. Bull. Math. Biol. 68:5.

    Google Scholar 

  • Ma, J., Levin, S.A., 2006. The evolution of resource adaptation: How generalist and specialist consumers evolve. Bull. Math. Biol. 68:5.

    MathSciNet  Google Scholar 

  • Marée, A.F.M., Jilkine, A., Dawes, A., Grieneisen, V.A., Edelstein-Keshet, L., 2006. Polarization and movement of keratocytes: A multiscale modeling approach. Bull. Math. Biol. 68:5.

    Google Scholar 

  • Mehr, R., 2006. Feedback loops, reversals and nonlinearities in lymphocyle development. Bull. Math. Biol. 68:5.

    Google Scholar 

  • Sliusarenko, O., Chen, J., Oster, G., 2006. From biochemistry to morphogenesis in myxobacteria. Bull. Math. Biol. 68:5.

    Google Scholar 

  • Ward, M.J., 2006. Asymptotic methods for reaction-diffusion systems: past and present. Bull. Math. Biol. 68:5.

    Google Scholar 

Publications by L. A. Segel

  • Segel, L.A., 1960. A uniformly-valid asymptotic expansion of the solution to an unsteady boundary-layer problem. J. Math. Phys. 39, 189–197.

    MathSciNet  MATH  Google Scholar 

  • Segel, L.A., 1961. Application of conformal mapping to boundary perturbation problems for the membrane equation. Arch. Ration. Mech. Anal. 8, 228–237.

    MathSciNet  MATH  Google Scholar 

  • Segel, L.A., 1961. Application of conformal mapping to viscous flow between moving circular cylinders. Q. Appl. Math. 18, 335–353.

    MathSciNet  MATH  Google Scholar 

  • Segel, L.A., 1962. The nonlinear interaction of two disturbances in the thermal convection problem. J. Fluid Mech. 14, 97–114.

    MathSciNet  MATH  Google Scholar 

  • Segel, L.A., Stuart, J.T., 1962. On the question of the preferred mode in cellular thermal convection. J. Fluid Mech. 13, 289–306.

    MathSciNet  MATH  Google Scholar 

  • Segel, L.A., 1965. The nonlinear interaction of a finite number of disturbances to a layer of fluid heated from below. J. Fluid Mech. 21, 359–384.

    MathSciNet  MATH  Google Scholar 

  • Segel, L.A., 1965. The structure of nonlinear cellular solutions to the Boussinesq equations. J. Fluid Mech. 21, 345–358.

    MathSciNet  MATH  Google Scholar 

  • Segel, L.A., 1966. Nonlinear hydrodynamic stability theory and its application to thermal convection and curved flows. In: Donnelly, R.J., Prigogine, I., Herman, R. (Eds.), Non-equilibrium thermodynamics: Variational techniques and stability. University of Chicago Press, pp. 165–197.

  • Segel, L.A., 1966. The importance of asymptotic analysis in applied mathematics. Am. Math. Mon. 73, 7–14.

    MathSciNet  MATH  Google Scholar 

  • Scanlon, J.W., Segel, L.A., 1967. Finite amplitude cellular convection induced by surface tension. J. Fluid Mech. 30, 149–162.

    MATH  Google Scholar 

  • Davis, S.H., Segel, L.A., 1968. Effects of surface curvature and property variation on cellular convection. Phys. Fluids 11, 470–476.

    MATH  Google Scholar 

  • Segel, L.A., 1969. Distant sidewalls cause slow amplitude modulation of cellular convection. J. Fluid Mech. 38, 203–224.

    MATH  Google Scholar 

  • Keller, E.F., Segel, L.A., 1970. Conflict between positive and negative feedback as an explanation for the initiation of aggregation in slime mold amoebae. Nature 227, 1365.

    Google Scholar 

  • Keller, E.F., Segel, L.A., 1970. The initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415.

    Google Scholar 

  • Segel, L.A., 1970. Standing gradient flows driven by active solute transport. J. Theor. Biol. 29, 233–250.

    Google Scholar 

  • Wollkind, D.J., Segel, L.A., 1970. A nonlinear stability analysis of the freezing of a dilute binary alloy. Phil. Trans. R. Soc. London 268, 351–380.

    Google Scholar 

  • DiPrima, R.C., Eckhaus, W., Segel, L.A., 1971. Nonlinear wave-number interaction in near-critical two-dimensional flows. J. Fluid Mech. 49, 705–744.

    MATH  Google Scholar 

  • Drew, D.A., Segel, L.A., 1971. Analysis of fluidized beds and foams using averaged equations. Stud. Appl. Math. 50, 233–257.

    MATH  Google Scholar 

  • Drew, D.A., Segel, L.A., 1971. Averaged equations for two-phase flows. Stud. Appl. Math. 50, 205–231.

    MATH  Google Scholar 

  • Keller, E.F., Segel, L.A., 1971. Model for chemotaxis. J. Theor. Biol. 30, 225–234.

    Google Scholar 

  • Keller, E.F., Segel, L.A., 1971. Travelling bands of chemotactic bacteria: A theoretical analysis. J. Theor. Biol. 30, 235–248.

    Google Scholar 

  • Marsh, D.J., Segel, L.A., 1971. Analysis of counter-current diffusion exchange in blood vessels of the renal medulla. Am. J. Physiol. 817–828.

  • Segel, L.A., 1971. On collective motions of chemotactic cells. In: Cowan, J.D. (Ed.), Some Mathematical Questions in Biology, American Mathematical Society, Providence, Rhode Island, pp. 3–46.

  • Segel, L.A., 1971. On the effect of sidewalls in cellular convection. In: Leipholz, H. (Ed.), Instability of Continuous Systems, International Union of Theoretical and Applied Mechanics Symposium, Springer-Verlag, Berlin, pp. 158–161.

  • Segel, L.A., 1972. Simplification and scaling. SIAM Rev. 14, 547–571.

    MathSciNet  MATH  Google Scholar 

  • Segel, L.A., Jackson, J.L., 1972. Dissipative structure: An explanation and an ecological example. J. Theor. Biol. 37, 545–559.

    Google Scholar 

  • Segel, L.A., Stoeckley, B., 1972. Instability of a layer of chemotactic cells, attractant, and degrading enzyme. J. Theor. Biol. 37, 561–585.

    Google Scholar 

  • Scanlon, J.W., Segel, L.A., 1973. Some effects of suspended particles on the onset of Bénard convection. Phys. Fluids 16, 1573–1578.

    MATH  Google Scholar 

  • Segel, L.A., Jackson, J.L., 1973. Theoretical analysis of chemotactic movement in bacteria. J. Mech. Chem. Cell Motil. 2, 25–34.

    Google Scholar 

  • Scribner, T., Segel, L.A., Rogers, E.H., 1974. A numerical study of the formation and propagation of traveling bands of chemotactic bacteria. J. Theor. Biol. 46, 189–219.

    Google Scholar 

  • Levitzki, A., Segel, L.A., Steer, M., 1975. Cooperative response of oligomeric protein receptors coupled to non-cooperative ligand binding. J. Mol. Biol. 91, 125–130.

    Google Scholar 

  • Hardt, S., Naparstek, A., Segel, L.A., Caplan, S.R., 1976. Spatio-temporal structure formation and signal propagation in a homogeneous enzymatic membrane. In: Thomas, D., Kernevez, J. (Eds.), Analysis and Control of Immobilized Enzyme Systems, North-Holland Publishing Co., Amsterdam, pp. 9–15.

  • Levin, S.A., Segel, L.A., 1976. Hypothesis for origin of planktonic patchiness. Nature 259 659.

    Google Scholar 

  • Segel, L.A., 1976, On the relation between the local interaction of cells and their global transformation. In: Marois, A. (Ed.), Proceedings of Fourth International Conference on Theoretical Physics and Biology (Versailles, 1973), North-Holland Press, Amsterdam.

  • Segel, L.A., 1976. Incorporation of receptor kinetics into a model for bacterial chemotaxis. J. Theor. Biol. 57, 23–42.

    MathSciNet  Google Scholar 

  • Segel, L.A., Levin, S.A., 1976. Applications of nonlinear stability theory to the study of the effects of dispersion on predator-prey interactions. In: Piccirelli, R. (Ed.), Selected Topics in Statistical Mechanics and Biophysics, American Institute of Physics Symposium 27, pp. 123–152.

  • Goldbeter, A., Segel, L.A., 1977. Unified mechanism for relay and oscillation of cyclic AMP in Dictyostelium discoideum. Proc. Natl. Acad. Sci. (U.S.A.) 74, 1543–1547.

    Google Scholar 

  • Parnas, H., Segel, L.A., 1977. Computer evidence concerning chemotactic response in aggregating Dictyostelium discoideum. J. Cell Sci. 25, 191–204.

    Google Scholar 

  • Segel, L.A., 1977. A theoretical study of receptor mechanisms in bacterial chemotaxis. SIAM J. Appl. Math. 32, 653–665.

    MATH  Google Scholar 

  • Segel, L.A., 1977. An introduction to continuum theory. In: DiPrima, R.C. (Ed.), Modern Modeling of Continuum Phenomena Lectures in Applied Mathematics 16, American Mathematical Society, Providence, R.I., pp. 1–60.

  • Segel, L.A., Chet, I., Hennis, Y., 1977. A simple quantitative assay for bacterial motility. J. Gen. Microbiol. 8, 329–337.

    Google Scholar 

  • Goldbeter, A., Erneux, T., Segel, L.A., 1978. Excitability in the adenylate cyclase reaction in Dictyostelium discoideum. FEBS Lett. 89, 237–241.

    Google Scholar 

  • Gressel, J., Segel, L.A., 1978. The paucity of plants evolving genetic resistance to herbicides: Possible reasons with implications. J. Theor. Biol. 349–371.

  • Kedem, O., Rubinstein, I., Segel, L.A., 1978. Reduction of polarization by ion-conduction spacers: Theoretical evaluation of a model system. Desalination 27, 143–156.

    Google Scholar 

  • Parnas, H., Segel, L.A., 1978. A computer simulation of pulsatile aggregation in Dictyostelium discoideum. J. Theor. Biol. 71, 185–207.

    Google Scholar 

  • Perelson, A., Segel, L.A., 1978. A singular perturbation approach to diffusion reaction equations containing a point source, with application to the hemolytic plaque assay. J. Math. Biol. 6, 75–85.

    MathSciNet  MATH  Google Scholar 

  • Segel, L.A., 1978. Mathematical models for cellular behavior. In: Levin, S. (Ed.), Studies in Mathematical Biology, Mathematical Association of America, pp. 156–190.

  • Rubinstein, I., Segel, L.A., 1979. Breakdown of a stationary solution to the Nernst-Planck-Poisson equations. J. Chem. Soc. Faraday Trans. 75, 936–940.

    Google Scholar 

  • Segel, L.A., 1979. On deducing the nature and effect of attractant-receptor binding from population movements of chemotactic bacteria. In: DeLisi, C., Blumenthal, R. (Eds.), Physical Chemical Aspects of Cell Surface Events in Cellular Regulation, Elsevier North-Holland Publishing Co., New York, pp. 293–302.

  • Goldbeter, A., Segel, L.A., 1980. Control of developmental transitions in the cyclic AMP signaling system of Dictyostelium discoideum. Differentiation 17, 127–135.

    Google Scholar 

  • Parnas, H., Segel, L.A., 1980. A theoretical explanation for some effects of calcium on the facilitation of neurotransmitter release. J. Theor. Biol. 84, 3–29.

    Article  Google Scholar 

  • Gressel, J., Segel, L.A., 1981. Interrelating factors controlling the rate of appearance of resistance: The outlook for the future. In: LeBaron, H., Gressel, J. (Eds.), Herbicide Resistance in Plants, J. Wiley and Co., N.Y., pp. 325–347.

  • Parnas, H., Segel, L.A., 1981. A theoretical study of calcium entry in nerve terminals, with application to neurotransmitter release. J. Theor. Biol. 91, 125–169.

    Google Scholar 

  • Rubinow, S.I., Segel, L.A., Ebel, W., 1981. A mathematical framework for the study of morphogenetic development in the slime mold. J. Theor. Biol. 91, 99–113.

    Google Scholar 

  • Rubinstein, I., Segel, L.A., 1981. Sensitivity and instability in standing gradient flow. In: Salanki, J. (Ed.), Physiology of Non-Excitable Cells, Pergamon Press, Oxford, pp. 71–80.

  • Segel, L.A., 1981. A mathematical model relating to herbicide resistance. In: Boyce, W. (Ed.), Case studies in Mathematical Modelling, Pitman Publishing Ltd., London, pp. 1–17.

  • Falkovitz, M.S., Segel, L.A., 1982. Some analytic results concerning the accuracy of the continuous approximation in a polymerization problem. SIAM J. Appl. Math. 42, 542–548.

    MathSciNet  MATH  Google Scholar 

  • Falkowitz, M.S., Segel, L.A., 1982. Spatially inhomogeneous polymerization in unstirred bulk. SIAM J. Appl. Math. 42, 542–548.

    MathSciNet  Google Scholar 

  • Levin, S.A., Segel, L.A., 1982. Models of the influence of predation on aspect diversity in prey populations. J. Math. Biol. 14, 253–285.

    MathSciNet  MATH  Google Scholar 

  • Parnas, H., Segel, L.A., 1982. Ways to discern the presynaptic effect of drugs on neurotransmitter release. J. Theor. Biol. 94, 923–941.

    MathSciNet  Google Scholar 

  • Segel, L.A., Ducklow, H., 1982. A theoretical investigation into the influence of sublethal stresses on coral bacterial ecosystem dynamics. Bull. Mar. Sci. 32, 919–935.

    Google Scholar 

  • Edelstein, L., Hadar, Y., Chet, I., Henis, Y., Segel, L.A., 1983. A model for fungal colony growth applied to Sclerotium rolfsii. J. Gen. Microbiol. 129, 1873–1881.

    Google Scholar 

  • Edelstein, L., Segel, L.A., 1983. Growth and metabolism in mycelial fungi. J. Theor. Biol. 104, 187–210.

    Google Scholar 

  • Parnas, H., Segel, L.A., 1983. A case study of linear versus nonlinear modelling. J. Theor. Biol. 103, 549–580.

    Google Scholar 

  • Segel, L.A., Volk, T., Geiger, B., 1983. On spatial periodicity in the formation of cell adhesions to a substrate. Cell Biophys. 5, 95–104.

    Google Scholar 

  • Keshet, Y., Segel, L.A., 1984. Pattern formation in aspect. In: Jager, W., Murray, J.D. (Eds.), Modeling of Patterns in Space and Time, Springer-Verlag, Berlin, pp. 188–197.

  • Khait, A., Segel, L.A., 1984. A model for the establishment of pattern by positional differentiation with memory. J. Theor. Biol. 110, 135–153.

    MathSciNet  Google Scholar 

  • Novick-Cohen, A., Segel, L.A., 1984. A gradually slowing travelling band of chemotactic bacteria. J. Math. Biol. 19, 125–132.

    MATH  Google Scholar 

  • Novick-Cohen, A., Segel, L.A., 1984. Nonlinear aspects of the Cahn-Hilliard equation. Phys. D Nonlinear Phenom. 10, 277–298.

    MathSciNet  Google Scholar 

  • Parnas, H., Segel, L.A., 1984. Exhaustion of calcium does not terminate neurotransmitter release. J. Theor. Biol. 107, 345–365.

    Google Scholar 

  • Segel, L.A., 1984. Taxes in cellular ecology. In: Levin, S.A., Hallam, T. (Eds.), Mathematical Ecology, Springer Verlag, Berlin, pp. 407–424.

  • Levin, S.A., Segel, L.A., 1985. Pattern generation in space and aspect by interaction and redistribution. SIAM Rev. 27, 45–67.

    MathSciNet  MATH  Google Scholar 

  • Perelson, A.S., Segel, L.A., 1985. On a model for the structure of circular mitochondrial genomes in higher plants. IMA J. Math. Appl. Med. Biol. 2, 41–56.

    MathSciNet  MATH  Google Scholar 

  • Segel, L.A., Goldbeter, A., Devreotes, P.N., Knox, B.E., 1985. A model for sensory response and exact adaptation mediated by receptor modification. In: Eisenbach, M., Balaban, M. (Eds.), Sensory Response in Microorganisms, Elsevier Publishers B.V., Amsterdam, pp. 175–83.

  • Grinfeld, M., Segel, L.A., 1986. Implementation and extension of MacWilliams model for pre-stalk pre-spore regulation in cellular slime mold. J. Theor. Biol. 121, 23–44.

    MathSciNet  Google Scholar 

  • Knox, B.E., Devreotes, P., Goldbeter, A., Segel, L.A., 1986. A molecular mechanism for sensory adaptation based on ligand-induced receptor modification. Proc. Nat. Acad. Sci. (USA), 83, 2345–2349.

    Google Scholar 

  • Lustig, C., Parnas, H., Segel, L.A., 1986. On the quantal hypothesis of neurotransmitter release: An explanation for the calcium dependence of the binomial parameters. J. Theor. Biol. 120, 205–13.

    Google Scholar 

  • Parnas, H., Parnas, I., Segel, L.A., 1986. A new method for determining cooperativity in neurotransmitter release. J. Theor. Biol. 119, 481–99.

    Google Scholar 

  • Segel, L.A., 1986. Some stability problems in theoretical biology. In: Drew, D., Flaherty, J. (Eds.), Mathematics Applied to Fluid Mechanics and Stability, Philadelphia: Society of Industrial Applied Mathematics, pp. 110–121.

  • Segel, L.A., Goldbeter, A., Devreotes, P., Knox, B.E., 1986. A mechanism for exact adaptation based on receptor modification. J. Theor. Biol. 120, 151–79.

    MathSciNet  Google Scholar 

  • Williams, K.L., Vardy, P.H., Segel, L.A., 1986. Cell migration during mophogenesis: Some clues from the slug of Dictyostelium discoideum. BioEssays 5, 148–52.

    Google Scholar 

  • Brendel, V., Segel, L.A., 1987. On modes of recombination, replication, and segregation of the higher plant mitochondrial genome. J. Theor. Biol. 125, 163–176.

    Google Scholar 

  • Segel, L.A., 1987. On some applications of differential equations in biology. In: Sleeman, B.D., Jarvis, R.J. (Eds.), Proceedings of Ninth Dundee Conference 1986 on Ordinary and Partial Differential Equations, Pitman Research Notes in Mathematics Series. Harlow: Longman Scientific and Technical Publishers 157, pp. 194–204.

  • Segel, L.A., 1987. Toward molecular sensory physiology: Mathematical models. In: Teramoto, E., Yamaguti, M. (Eds.), Mathematical Topics in Population Biology, Morphogenesis and Neurosciences, Springer-Verlag, Berlin, pp. 313–21.

  • Barchilon, M., Segel, L.A., 1988. Adaptation, oscillations and relay in a model for cAMP secretion in cellular slime molds. J. Theor. Biol. 133, 437–446.

    Google Scholar 

  • Parnas, H., Segel, L.A., 1988. Facilitation as a tool to study the entry of calcium and the mechanism of neurotransmitter release. Prog. Neurobiol. 32, 1–9.

    Google Scholar 

  • Segel, L.A., Perelson, A.S., 1988. Computations in shape space: A new approach to immune network theory. In: Perelson, A. (Ed.), Theoretical Immunology Part Two, SFI Studies in the Sciences of Complexity, Addison-Wesley Publishing Company, pp. 321–343.

  • Segel, L.A., 1988. Dynamic phenomena in molecular and cellular biology. In: Markus, M., Mueller, S., Nicolis, G. (Eds.), From Chemical to Biological Organization. Springer Verlag, Berlin, pp. 211–215.

  • Segel, L.A., 1988. On the validity of the steady state assumption of enzyme kinetics. Bull. Math. Biol. 50, 579–93.

    MathSciNet  MATH  Google Scholar 

  • Segel, L.A., 1988. Some nonstandard modelling techniques in theoretical biology. Math. Biosci. 90, 201–210. Also in Perelson, A.S., Goldstein, B., Dembo, M., Jacquez, J.A. (Eds.), Nonlinearity in Biology and Medicine, Elsevier/North Holland, N.Y., pp. 201–210.

  • Segel, L.A., 1988. Theoretical biology as a branch of applied mathematics: Some examples. In: Proceedings of a Symposium to honor. Lin, C.C., Benney, D.J., Shu, F.H., Yuan, C. (Eds.), Applied Mathematics, Fluid Mechanics, Astrophysics, World Scientific Publishing Co., Singapore, pp. 15–28.

  • Lustig, C., Parnas, H., Segel, L.A., 1989. Neurotransmitter release: Development of a theory for total release based on kinetics. J. Theor. Biol. 136, 151–170.

    MathSciNet  Google Scholar 

  • Segel, L.A., Perelson, A., 1989. Shape space: An approach to the evaluation of cross-reactivity effects, stability, and controlability in the immune system. Immunology Lett. 22, 91–100.

    Google Scholar 

  • Segel, L.A., Perelson, A.S., 1989. Some reflections on memory in shape space. In: Atlan, H., Cohen, I.R. (Eds.), Theories of Immune Networks, Springer-Verlag, Berlin, pp. 63–70.

  • Segel, L.A., Slemrod, M., 1989. The quasi-steady state assumption: A case study in perturbation. SIAM Rev. 31, 446–477.

    MathSciNet  MATH  Google Scholar 

  • Segel, L.A., Perelson, A.S., 1989. Shape space analysis of immune networks. In: Goldbeter, A. (Ed.), Cell to Cell Signalling: From Experiments to Theoretical Models, Academic Press, New York, pp. 273–283.

  • Gressel, J., Segel, L.A., 1990. Herbicide rotations and mixtures: Effective strategies to delay resistance. In: Green, M.B., LeBaron, H.M., Moberg, W.K. (Eds.), Managing Resistance to Agrochemicals: From Fundamental Research to Practical Strategies, ACM Symposium Series, American Chem. Society, Washington, D.C., pp. 430–458.

  • Gressel, J., Segel, L.A., 1990. Modelling the effectiveness of herbicide rotations and mixtures as strategies to delay or preclude resistance. Weed Technol. 4, 186–198.

    Google Scholar 

  • Gressel, J., Segel, L.A., 1990. Negative cross-resistance; a possible key to atrazine resistance management: A call for whole plant data. Zeitschrift Naturforschungen 45c, 470–473.

    Google Scholar 

  • Levin, S., Segel, L.A., Adler, F., 1990. Diffuse coevolution in plant-herbivore communities. Theor. Popul. Biol. 37(1), 171–191.

    MathSciNet  MATH  Google Scholar 

  • Lustig, C., Parnas, H., Segel, L.A., 1990. Release kinetics as a tool to describe drug effects. J. Theor. Biol. 144, 225–248.

    Google Scholar 

  • Parnas, H., Parnas, I., Segel, L.A., 1990. On the contribution of mathematical models to the understanding of neurotransmitter release. International Review of Neurobiology 32, 1–50. Smythies, J.R., Bradley, R.J. (Eds.), Academic Press, Orlando.

  • Segel, L.A., Perelson, A.S., 1990. A paradoxical instability caused by relatively short range inhibition. SIAM J. Appl. Math. 50(1), 91–107.

    MathSciNet  MATH  Google Scholar 

  • Av-Ron, E., Parnas, H., Segel, L., 1991. A minimal biophysical model for an excitable and oscillatory neuron. Biol. Cybern. 65, 487–500.

    Google Scholar 

  • Segel, L.A., Perelson, A.S., 1991. Exploiting the diversity of time scales in the immune system: A B-cell antibody model. J. Stat. Phy. 63, 1113–1131.

    Google Scholar 

  • Segel, L.A., 1991. The infinite and the infinitesimal in models for natural phenomena. Rev. Mod. Phys. 63, 225–238.

    MathSciNet  Google Scholar 

  • Segel, L.A., Parnas, H., 1991. What controls the exocytosis of neurotransmitter? In: Leibler, S., Peliti, L. (Eds.), Biologically Inspired Physics. Plenum Publishing Company, NY, pp. 347–362.

  • Aflalo, C., Segel, L.A., 1992. Local probes and heterogeneous catalysis: A case study of a mitochondria-luciferase-hexokinase coupled system. J. Theor. Biol. 158, 67–108.

    Google Scholar 

  • Betz, H., Douglas, R.J., Egelhaaf, M., Jack, J., Koch, C., Korn, H., Marder, E., Parnas, H., Segel, L.A., Traub, R.D., Vetter, T., 1992. Molecular and biophysical mechanisms of information processing. In: Galzer, D., Poggio, T. (Eds.), Exploring Brain Functions: Models in Neuroscience. Dahlem Workshop, Life Science Research Report, John Wiley & Sons, New York, pp. 59–75.

  • de Boer, R.J., Segel, L.A., Perelson, A.S., 1992. Pattern formation in one and two dimensional shape space models of the immune system. J. Theor. Biol. 155, 295–333.

    Google Scholar 

  • Jäger, E., Segel, L., 1992. On the distribution of dominance in a population of interacting anonymous organisms. SIAM J. Appl. Math. 52, 1442–1468.

    MathSciNet  MATH  Google Scholar 

  • Segel, L.A., 1992. Deriving and analyzing nonlinear equations in theoretical biology. In: Xiao, S., Hu, X.-C. (Eds.), International Symposium on Nonlinear Problems in Engineering and Science—Numerical and Analytical Approach. Science Press, Beijing, China, pp. 121–128.

  • Segel, L.A., Perelson, A.S., 1992. Plasmid copy number control: A case study of the quasi-steady state assumption. J. Theor. Biol. 158, 481–494.

    Google Scholar 

  • Segel, L.A., Perelson, A.S., Hyman, J.M., Klaus, S.N., 1992. Rash theory. In: Perelson, A.S., Weisbuch, G. (Eds.), Theoretical and Experimental Insights into Immunology, NATO ASI Series, Springer-Verlag, Berlin, pp. 333–352.

  • Av-Ron, E., Parnas, H., Segel, L., 1993. A basic biophysical model for bursting neurons. Biol. Cybern. 69(1), 87–95.

    Google Scholar 

  • Av-Ron, E., Parnas, H., Segel, L.A., 1993. Modeling bursting neurons of the lobster cardiac network. In: Deneubourg, J.L., Goss, S., Nicolis, G., Dagonnier, R. (Eds.), Proceedings of the Second European Conference on Artificial Life. ULB, Bruxelles.

  • Duvdevani-Bar, S., Lavie, V., Segel, L., Schwartz, M., 1993. A new method for expressing axonal size: Rat optic nerve analysis. J. Electron Microsc. 42, 412–414.

    Google Scholar 

  • de Boer, R.J., Neumann, A.U., Perelson, A.S., Segel, L.A., Weisbuch, G., 1993. Recent approaches to immune networks. In: Demongeot, A., Capasso, V. (Eds.), Proceedings of First European Biomathematics Conference, Mathematics Applied to Biology and Medicine, Wuerz Publishing, Ltd., Winnepeg, Canada.

  • Futerman, A.H., Khanin, R., Segel, L.A., 1993. Lipid diffusion in neurons. Nature 362, 119.

    Google Scholar 

  • Av-Ron, E., Parnas, H., Segel, L.A., 1994. Modeling the bursting interneurons of the lobster cardiac ganglion. In: Bower, J.M. (Ed.), The Neurobiology of Computation, Kluwer Academic Publishers, Norwell, MA, pp. 47–52.

  • Duvdevani-Bar, S., Segel, L. 1994. On topological simulations in developmental biology. J. Theor. Biol. 166, 33–50.

    Google Scholar 

  • Khanin, R., Parnas, H., Segel, L., 1994. Diffusion cannot govern the discharge of neurotransmitter in fast synapses. Biophys. J. 67, 966–972.

    Google Scholar 

  • Mehr, R., Segel, L., Sharp, A., Globerson, A., 1994. Colonization of the thymus by T cell progenitors: Models for cell-cell interactions. J. Theor. Biol., 170, 247–257.

    Google Scholar 

  • Segel, L.A., 1994. Toward artificial competence. In: Levin, S. (Ed.), Frontiers in Mathematical Biology. Springer Verlag, pp. 117–121.

  • Segel, L., Goldbeter, A., 1994. Scaling in biochemical kinetics: Dissection of a relaxation oscillator. J. Math. Biol. 32, 147–160.

    MATH  Google Scholar 

  • Segel, L.A., Jaeger, E., 1994. Reverse engineering a model for T cell vaccination. Bull. Math. Biol. 56, 687–722.

    MATH  Google Scholar 

  • Mehr, R., Fridkis-Hareli, M., Abel, L., Segel, L., Globerson, A., 1995. Lymphocyte development in irradiated thymuses: Dynamics of colonization by progenitor cells and regeneration of resident cells. J. Theor. Biol. 77, 181–192.

    Google Scholar 

  • Segel, L., 1995. A personal sample of patterns in biology. In: Doelman, A., van Harten, A. (Eds.), Nonlinear Dynamics and Pattern Formation in the Natural Environment. Longmans.

  • Segel, L., 1995. Grappling with complexity. Complexity 1(2), 18–25.

    Google Scholar 

  • Segel, L.A., Jaeger, E., Elias, D., Cohen, I.R., 1995. A quantitative model of autoimmune disease and T-cell vaccination: Why more cells may produce less effect. Immunology Today 16, 80–84.

    Google Scholar 

  • Segel, L.A., Jäger, E., 1995. T-cell vaccination via reverse engineering: Transient disease. J. Biol. Syst. 3, 441–446.

    Google Scholar 

  • Sivan, E., Segel, L.A., Parnas, H., 1995. Modulated excitability: A new way to obtain bursting neurons. Biol. Cybern. 72, 455–461.

    MATH  Google Scholar 

  • Borghans, J.A.M., De Boer, R.J., Segel, L.A., 1996. Extending the quasi-steady state approximation by changing variables. Bull. Math. Biol. 58, 43–64.

    MATH  Google Scholar 

  • Fishman, M., Segel, L., 1996. Modelling immunotherapy for allergy Bull. Math. Biol. 58, 1099–1122.

    MATH  Google Scholar 

  • Gressel, J., Segel, L., Ransom, J.K., 1996. Managing the delay of evolution herbicide resistance in parasitic weeds. Int. J. Pest Manag. 42, 113–129.

    Google Scholar 

  • Khanin, R., Segel, L., Parnas, H., Ratner, E., 1996. Neurotransmitter discharge and postsynaptic rise times. Biophys. J. 70, 2030–2032.

    Google Scholar 

  • Segel, L.A., 1996. Neurotransmitter release: A case study in theoretical biology. Nova Journal of Mathematics, Game Theory and Algebra 5(1), 89–101. Also in: Applied Mathematics: Methods and Applications, Oyibo, G. (Ed.), Nova Science Publishers.

  • Segel, L., Eisenbach, M., 1996. A seat of affection resides in the bowel. Ann. Improbable Res. 2, 17.

    Google Scholar 

  • Khanin, R., Parnas, H., Segel, L.A., 1997. “First step” negative feedback accounts for inhibition of neurotransmitter release. J. Theor. Biol., 188, 261–276.

    Google Scholar 

  • Khanin, R., Parnas, H., Segel, L., 1997. A mechanism for discharge of charged excitatory neurotransmitter. Biophys. J. 72, 507–21.

    Article  Google Scholar 

  • Segel, L.A., 1997. Forays into theoretical immunology. Curr. Sci. 73, 929–932.

    Google Scholar 

  • Segel, L.A., 1997. The immune system as a prototype of autonomous decentralized systems, in Proceedings of special session on Artificial Immune Systems and Their Applications, IEEE International Conference on Systems, Man, and Cybernetics, Orlando, FL, 5, pp. 375–385.

  • Bonner, J.T., Segel, L., Cox, E.C., 1998. Oxygen and differentiation in Dictyostelium discoideum. J. Biosci. 23, 177–184.

    Google Scholar 

  • Khanin, R., Segel, L., Futerman, A.H., 1998. The diffusion of membrane molecules in axons: The sites of insertion of new membrane molecules and their distribution along the axon surface. J. Theor. Biol. 193, 371–382.

    Google Scholar 

  • Lev Bar-Or, R., Segel, L.A., 1998. On the role of a possible dialog between cytokine and TCR-presentation mechanisms in the regulation of autoimmune disease. J. Theor. Biol. 190, 161–178.

  • Mehr, R., Perelson, A.S., Sharp, A., Segel, L., Globerson, A., 1998. MHC-linked syngeneic developmental preference (SDP) in thymic lobes colonized with bone marrow cells—a mathematical model. Dev. Immunol. 5, 303–318.

    Article  Google Scholar 

  • Segel, L.A., 1998. Multiple attractors in immunology; theory and experiment. Biophys. Chem. 72, 223–230.

    Google Scholar 

  • Segel, L.A., Lev Bar-Or, R., 1998. Immunology viewed as the study of an autonomous decentralized system. In: Dasgupta, D. (Ed.), Artificial Immune Systems and their Applications, Springer-Verlag, Berlin, pp. 65–88.

  • Segel, L.A., Lev Bar-Or, R., 1999. On the role of feedback in promoting conflicting goals of the adaptive immune system. J. Immunol. 163, 1342–1349.

  • Yusim, K., Parnas, H., Segel, L.A., 1999. Theory of fast neurotransmitter release control based on voltage-dependent interaction between autoreceptors and proteins of the exocytotic machinery. Bull. Math. Biol. 61, 701–725.

    Google Scholar 

  • Bergmann, C., van Hemmen, J.L., Segel, L.A., 2000. Th1 or Th2: How an appropriate T helper response can be made Bull. Math. Biol. 63, 405–430.

    Google Scholar 

  • Lev Bar-Or, R., Maya, R., Segel, L.A., Alon, U., Levine, A.J., Oren, M., 2000. Generation of oscillations by the p53-Mdm2 feedback loop: A theoretical and experimental study. Proc. Natl. Acad. Sci. USA, 97, pp. 11250–11255.

  • Parnas, H., Segel, L.A., Dudel, J., Parnas, I., 2000. Autoreceptors, membrane potential and the regulation of transmitter release. Trend Neurosci. 23, 60–68.

    Google Scholar 

  • Segel, L.A., 2000. Diffuse feedback from diffuse information in complex systems. Complexity 5, 39–46.

    Google Scholar 

  • Yusim, K., Parnas, H., Segel, L.A., 2000. Theory of the feedback inhibition of fast release of neurotransmitter. Bull. Math. Biol. 62, 717–757.

    Google Scholar 

  • Segel, L.A., 2001. Computing an organism. Proc. Natl. Acad. Sci. (USA), 98, 3639–3640.

    Google Scholar 

  • Segel, L.A., 2001. Controlling the immune system: Diffuse feedback via a diffuse informational network, In: Bock, G., Goode, J. (Eds.), Complexity in Biological Information Processing, John Wiley & Sons, Sussex, UK, pp. 31–39.

  • Segel, L.A., 2001. Diffuse Feedback from a Diffuse Informational Network: In: Segel, L.A., Cohen, Y. (Eds.), The Immune System and Other Distributed Autonomous Systems. Oxford University Press, pp. 203–226.

  • Segel, L.A., 2001. How can perception of context improve the immune response In: Steinman (EEd.), Autoimmunity and Emerging Diseases, Jerusalem: The Center for the Study of Emerging Diseases, pp. 169–191.

  • Segel, L.A., 2001. How does the immune system see to it that it is doing a good job. Graft 4(6), 15–18.

    Google Scholar 

  • Segel, L.A., 2001. How the immune system works: Theoretical thoughts. In: Grigoryan, A., Fokas, A., Kibble, T., Zegarlinski, B. (Eds.), XIIIth International Congress on Mathematical Physics. International Press of Boston, Somerville, MA, pp. 165–172.

  • Yusim, K., Parnas, H., Segel, L.A., 2001. The one-vesicle hypothesis for neurotransmitter release: A possible molecular mechanism Bull. Math. Biol. 63, 1025–1040.

    Google Scholar 

  • Bergmann, C., van Hemmen, J.L., Segel, L.A., 2002. How instruction and feedback can select the appropriate T helper response. Bull. Math. Biol. 425–446.

  • Parnas, H., Valle-Lisboa, J.-C., Segel, L.A., 2002. Can the Ca-hypothesis and the Ca-voltage hypothesis for neurotransmitter release be reconciled. Proc. Natl. Acad. Sci. (USA) 99, 17149–54.

    Google Scholar 

  • Segel, L.A., 2002. Some spatio-temporal models in immunology. Int. J. Bifurcation and Chaos 12, 2343–2347.

    Google Scholar 

  • Shochat, E., Stemmer, S., Segel, L.A., 2002. Human haematopoiesis in steady state and following intense perturbations. Bull. Math. Biol. 64, 861–886.

    Google Scholar 

  • Kliman, H.J., Segel, L., 2003. The placenta may predict the baby. J. Theor. Biol. 225, 143–145.

    MathSciNet  Google Scholar 

  • Safro, I., Segel, L.A., 2003. Collective versions of playable games as metaphors for complex biosystems: Team connect four. Complexity 8, 46–55.

    MathSciNet  Google Scholar 

  • Warrender, C., Forrest, S., Segel, L., 2004. Homeostasis of peripheral immune effectors. Bull. Math. Biol. 66, 1493–514.

    Google Scholar 

  • Kooijman, S.A.L.M., Segel, L.A., 2005. How growth affects the fate of cellular metabolites. Bull. Math. Biol. 67, 57–77.

    MathSciNet  Google Scholar 

  • Sela, R., Segel, L.A., Parnas, I., Parnas, H., 2005. Depolarization ceases to control neurotransmitter release after Ca2+ uncaging: Prediction of the Ca2+-voltage hypothesis. J. Comput. Neurosci. 19, 5–20.

    Google Scholar 

Books by L. A. Segel

  • Lin, C.C., Segel, L.A. (with material on elasticity by G.H. Handelman), 1974. Mathematics Applied to Deterministic Problems in the Natural Sciences. Macmillan Publishing Co., Inc., New York, 604 pp. Reprinted (1988), with corrections and a few additions, by SIAM (Society for Industrial and Applied Mathematics, Philadelphia, PA) as No. 1 in series “Classics in Applied Mathematics.” Translated into Chinese (1986).

  • Segel, L.A. (with chapters by G.H. Handelman), 1977. Mathematics Applied to Continuum Mechanics. Macmillan Publishing Co., Inc., New York, 590 pp. Reprinted by Dover Publications, 1987.

  • Segel, L.A. (editor and contributor), 1980. Mathematical Models in Molecular and Cellular Biology. Cambridge University Press, Cambridge, 757 pp.

  • Segel, L.A., 1984. Modelling Dynamic Phenomena in Molecular and Cellular Biology. Cambridge University Press, Cambridge, 300 pp.

    Google Scholar 

  • Odell, G.M., Segel, L.A., 1987. Biograph: A Graphical Simulation Package with Exercises. To accompany Lee A. Segel’s “Modelling Dynamic Phenomena in Molecular and Cellular Biology.” Cambridge University Press, 243 pp.

  • Segel, L.A., 1991. (editor and contributor): Biological Kinetics. Cambridge University Press, 220 pp. [Revised version of part of B3.]

  • Segel, L.A., Cohen, Y. (Eds.), 2001. Design Principles for the Immune System and Other Distributed Autonomous Systems. Oxford University Press, New York.

    Google Scholar 

Download references

Author information

Consortia

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leah Keshet., Alan Perelson. Bulletin of Mathematical Biology Special Issue. Bull. Math. Biol. 68, 969–980 (2006). https://doi.org/10.1007/s11538-006-9134-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-006-9134-4

Navigation