Skip to main content
Log in

QSAR Studies Using Radial Distribution Function for Predicting A1 Adenosine Receptors Agonists

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The radial distribution function (RDF) approach has been applied to the study of the A1 adenosine receptors agonist effect of 32 adenosine analogues. A model able to describe more than 79% of the variance in the experimental activity was developed with the use of the mentioned approach. In contrast, none of the three different approaches, including the use of 2D autocorrelations, BCUT and 3D-MORSE descriptors were able to explain more than 72% of the variance in the mentioned property with the same number of variables in the equation. In addition, we established a comparison with other models reported by us for this receptor subtype using this data set, and the RDF descriptors continue getting the best results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike, H., 1973. Information theory and an extension of the maximum likelihood principle. In: Petrov, B.N., Csaki, F. (Eds.), Second International Symposium on Information Theory, Akademiai Kiado, Budapest, pp. 267–281.

    Google Scholar 

  • Akaike, H., 1974. A new look at the statistical model identification. IEEE Trans. Automat. Control AC-19, 716–713.

    Google Scholar 

  • Baraldi, P.G., Cacciari, B., Pineda de Las Infantas, M.J., Romagnoli, R., Spalluto, G., Volpini, R., Costanzi, S., Vittori, S., Cristalli, G., Melman, N., Park, K.S., Ji, X.D., Jacobson, K.A., 1998. Synthesis and biological activity of a new series of N6-arylcarbamoyl, 2-(Ar)alkynyl-N6-arylcarbamoyl, and N6-carboxamido derivatives of adenosine-5’-N-ethyluronamide as A1 and A3 adenosine receptor agonists. J. Med. Chem. 41(17), 3174–3185.

    Article  Google Scholar 

  • Bhattacharya, P., Leonard, J.T., Roy, K., 2005. Exploring QSAR of thiazole and thiadiazole derivatives as potent and selective human adenosine A3 receptor antagonists using FA and GFA techniques. Bioorg. Med. Chem. 13(4), 1159–1165.

    Article  Google Scholar 

  • Dewar, M.J.S., Zoebisch, E.G., Healy, E.F., Stewart, J.J.P., 1985. AM1: A new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107, 3902–3909.

    Article  Google Scholar 

  • Dhalla, A.K., Shryock, J.C., Shreeniwas, R., Belardinelli, L., 2003. Pharmacology and therapeutic applications of A1 adenosine receptor ligands. Curr. Top Med. Chem. 3(4), 369–385.

    Article  Google Scholar 

  • Frank, J., 1993. MOPAC, Seiler Research Laboratory. US Air Force Academy, Colorado Springs, CO.

  • Fredholm, B.B., Ap, I.J., Jacobson, K.A., Klotz, K.N., Linden, J., 2001. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol. Rev. 53(4), 527–552.

    Google Scholar 

  • Fredholm, B.B., Arslan, G., Halldner, L., Kull, B., Schulte, G., Wasserman, W., 2000. Structure and function of adenosine receptors and their genes. Naunyn Schmiedebergs Arch. Pharmacol. 362(4–5), 364–374.

    Article  Google Scholar 

  • Gasteiger, J., Sadowski, J., Schuur, J., Selzer, P., Steinhauer, L., Steinhauer, V., 1996. Chemical Information in 3D Space. J. Chem. Inf. Comput. Sci. 36, 1030–1037.

    Google Scholar 

  • Gasteiger, J., Schuur, J., Selzer, P., Steinhauer, L., Steinhauer, V., Fresenius, J., 1997. Anal. Chem. 359, 50–59.

    Article  Google Scholar 

  • González, M.P., Teran, C., 2004a. QSAR study of N6-(substituted-phenylcarbamoyl) adenosine-5’-uronamides as agonist for A1 adenosine receptors. Bull. Math. Biol. 66(4), 907–920.

    Article  Google Scholar 

  • González, M.P., Teran, C., 2004b. A TOPS-MODE approach to predict adenosine kinase inhibition. Bioorg. Med. Chem. Lett. 14(12), 3077–3079.

    Article  Google Scholar 

  • González, M.P., Teran, C., 2004c. A TOPS-MODE approach to predict affinity for A1 adenosine receptors. 2-(Arylamino)adenosine analogues. Bioorg. Med. Chem. 12(11), 2985–2993.

    Article  Google Scholar 

  • González, M.P., Teran, C., Fall, Y., Teijeira, M., Besada, P., 2005. A radial distribution function approach to predict A(2B) agonist effect of adenosine analogues. Bioorg. Med. Chem. 13(3), 601–608.

    Article  Google Scholar 

  • González, M.P., Teran, C., Teijeira, M., Besada, P., 2005. Geometry, topology, and atom-weights assembly descriptors to predicting A1 adenosine receptors agonists. Bioorg. Med. Chem. Lett. 15(10), 2641–2645.

    Article  Google Scholar 

  • Hawkins, D.M., 2004. The problem of overfitting. J. Chem. Inf. Comput. Sci. 44(1), 1–12.

    Google Scholar 

  • Hemmer, M.C., Steinhauer, V., Gasteiger, J., 1999. The prediction of the 3D structure of organic molecules from their infrared spectra. Vibrat. Spectrosc. 19, 151–164.

    Article  Google Scholar 

  • Kiec-Kononowicz, K., Drabczynska, A., Pekala, E., Michalak, B., Muller, C.E., Schumacher, B., Karolak-Wojciechowska, J., Duddeck, H., Rockitt, S., Wartchow, R., 2001, New develoments in A1 and A2 adenosine receptor antagonists. Pure. Appl. Chem. 73(9), 1411–1420.

    Article  Google Scholar 

  • Klein, D.J., Randić, M., Babić, D., Lučić, B., Nikolić, S., Trinajstić, N., 1991. Hierarchical orthogonalization of descriptors. Int. J. Quant. Chem. 63(1), 215–222.

    Article  Google Scholar 

  • Kubinyi, H., 1994. Variable Selection in QSAR Studies. I. An evolutionary algorithm. Quant. Struct. Act. Relat. 13, 285–294.

    Google Scholar 

  • Lučić, B., Nikolić, S., Trinajstić, N., Jurić, D., 1995. The Structure–property models can be improved using the orthogonalized descriptors. J. Chem. Inf. Comput. Sci. 35, 532–538.

    Google Scholar 

  • Muller, C.E., 2000. Adenosine receptor ligands—Recent developments. Part I. Agonists. Curr. Med. Chem. 7(12), 1269–1288.

    Google Scholar 

  • Pearlman, R.S., Smith, K.M., 1997. In: H., Martin, Y., Folkers, G. (Eds.), 3D-QSAR and Drug Design: Recent Advances Kubinyi. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 339–353.

    Google Scholar 

  • Poulsen, S.A., Quinn, R.J., 1998. Adenosine receptors: New opportunities for future drugs. Bioorg. Med. Chem. 6(6), 619–641.

    Article  Google Scholar 

  • Randić, M., 1991a. Orthogonal molecular descriptors. New J. Chem. 15(7), 517–525.

    Google Scholar 

  • Randić, M., 1991b. Resolution of ambiguities in structure–property studies by use of orthogonal descriptors. J. Chem. Inf. Comput. Sci. 31, 311–320.

    Google Scholar 

  • Soudijn, W., van Wijngaarden, I., Ap, I.J., 2003. Medicinal chemistry of adenosine A1 receptor ligands. Curr. Top. Med. Chem. 3(4), 355–367.

    Article  Google Scholar 

  • Statsoft, I., 2002. STATISTICA (data analysis software system).

  • Todeschini, R., Consonni, V., 2000. Handbook of Molecular Descriptors. Wiley-VCH, Mannheim, pp. 667.

    Book  Google Scholar 

  • Todeschini, R., Consonni, V., Pavan, M., 2002. Dragon Software.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maykel Pérez González.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González, M.P., Terán, C., Teijeira, M. et al. QSAR Studies Using Radial Distribution Function for Predicting A1 Adenosine Receptors Agonists. Bull. Math. Biol. 69, 347–359 (2007). https://doi.org/10.1007/s11538-006-9127-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-006-9127-3

Key Words

Navigation