Bulletin of Mathematical Biology

, Volume 68, Issue 5, pp 1213–1229 | Cite as

Informational Landscapes in Art, Science, and Evolution

  • Irun R. CohenEmail author
Original Article


An informational landscape refers to an array of information related to a particular theme or function. The Internet is an example of an informational landscape designed by humans for purposes of communication. Once it exists, however, any informational landscape may be exploited to serve a new purpose. Listening Post is the name of a dynamic multimedia work of art that exploits the informational landscape of the Internet to produce a visual and auditory environment. Here, I use Listening Post as a prototypic example for considering the creative role of informational landscapes in the processes that beget evolution and science.


Information Meaning Complexity Fitness Understanding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atlan, H., 1987. Self-creation of meaning. Phys. Scr. 36, 563.CrossRefGoogle Scholar
  2. Atlan, H., Cohen, I.R., 1998. Immune information, self-organization and meaning. Int. Immunol. 10(6), 711–717.CrossRefGoogle Scholar
  3. Chaitin, G.J., 1998, 1999, 2001, 2002. The Limits of Mathematics, The Unknowable, Exploring Randomness, Conversations with a Mathematician. Springer-Verlag, Berlin.Google Scholar
  4. Cohen, I.R., 2000. Tending Adam’s Garden: Evolving the Cognitive Immune Self. Academic Press, London.Google Scholar
  5. Cohen, I.R., 2005. Regen und Auferstehung: Talmud und Naturwissenschaft im Dialog mit der Welt. Vandenhoek & Ruprecht, Göttingen, Germany.Google Scholar
  6. Cohen, I.R., Atlan, H., 2003. Limits to genetic explanations impose limits on the human genome project. In: Encyclopedia of the Human Genome. Nature Publishing Group, Macmillan, New York.Google Scholar
  7. Cohen, J., 2003. HIV. Escape artist par excellence. Science 299(5612), 1505–1508.CrossRefGoogle Scholar
  8. Conant, J.B., 1951. Science and Common Sense. Yale University Press, New Haven, CT, p. 25.Google Scholar
  9. Darwin, C., 1859. The Origin of Species.Google Scholar
  10. Dehal, P., Boore, J.L., 2005. Two rounds of whole genome duplication in the ancestral vertebrate. Plos Biol. 3(10), e314.CrossRefGoogle Scholar
  11. Efroni, S., Harel, D., Cohen, I.R., 2003. Toward rigorous comprehension of biological complexity: modeling, execution, and visualization of thymic T-cell maturation. Genome Res. Nov 13(11), 2485–2497.CrossRefGoogle Scholar
  12. Efroni, S., Harel, D., Cohen, I.R., (2005). The meaning of theory in complex systems. In: Paton, R.C. (Ed.), Multidisciplinary Approaches to Theory in Medicine. Elsiever Science, New York.Google Scholar
  13. Gibson, E., 2003. Poised Between Old and New. The Gallery. The Wall Street Journal, February 14.Google Scholar
  14. Gould, S.J., Lewontin, R., 1979. The spandrels of San Marco and the panglossian paradigm: a critique of the adaptationist programme. Proc. R. Soc. Lond. B205, 581–598.CrossRefGoogle Scholar
  15. Harel, D., 1987. Statecharts: a visual formalism for complex systems. Sci. Comput. Program. 8, 231–274.zbMATHCrossRefMathSciNetGoogle Scholar
  16. Hoffman, J.I., Boyd, I.L., Amos, W., 2004. Exploring the relationship between parental relatedness and male reproductive success in the Antarctic fur seal Arctocephalus gazella. Evol. Int. J. Org. Evol. 58(9), 2087–2099.Google Scholar
  17. Kahn, D., 1996. The Codebreakers: The Comprehensive History of Secret Communication from Ancient Times to the Internet, Rev. edn. Simon & Schuster, New York.Google Scholar
  18. Kimura, M., 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge, UK.Google Scholar
  19. Lenski, R.E., Ofria, C.O., Pennock, R.T., Adami, C., 2003. The evolutionary origin of complex features. Nature 423, 139–144.CrossRefGoogle Scholar
  20. Morrison, D., 2003. Impacts and evolution: Future prospects. Astrobiology 3(1), 193–205.CrossRefGoogle Scholar
  21. Neuman, Y., 2004. Meaning-making in the immune system. Perspect. Biol. Med. 47(3), 317–327.CrossRefGoogle Scholar
  22. Pennisi, E., 2003. Tracing life’s circuitry. Science 302, 1646.CrossRefGoogle Scholar
  23. Plotkin, H., 2001. Darwin Machines and the Nature of Knowledge. Harvard University Press, Cambridge, MA.Google Scholar
  24. Popper, K., 2002. The Logic of Scientific Discovery, 15th edn. Routledge, London.Google Scholar
  25. Robertson, D.S., 1991. Feedback theory and Darwinian evolution. J. Theor. Biol. 152(4), 469–484.CrossRefGoogle Scholar
  26. Segel, L.A., Bar-Or, R.L., 1999. On the role of feedback in promoting conflicting goals of the adaptive immune system. J. Immunol. 163(3), 1342–1349.Google Scholar
  27. Shannon, C.E., 1948. A mathematical theory of communication. Bell Syst. Tech. J. 30, 50.MathSciNetGoogle Scholar
  28. Waddington, C.H., 1940. Organizers and Genes. Cambridge University Press, Cambridge, UK.Google Scholar
  29. Weisbuch, G., Solomon, S., 2002. Social percolators and self organized criticality. In: Bornholdt, S., Schuster, H.G. (Eds.), Handbook of Graphs and Networks: From the Genome to the Internet. Wiley-VCH, Berlin, pp. 113–132.Google Scholar
  30. Wolfram, S., 2002. A New Kind of Science, Wolfram Media, Champaign IL.zbMATHGoogle Scholar

Copyright information

© Society for Mathematical Biology 2006

Authors and Affiliations

  1. 1.Department of ImmunologyThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations