Skip to main content

From Biochemistry to Morphogenesis in Myxobacteria

Abstract

Many aspects of metazoan morphogenesis find parallels in the communal behavior of microorganisms. The cellular slime mold D. discoideum has long provided a metaphor for multicellular embryogenesis. However, the spatial patterns in D.d. colonies are generated by an intercellular communication system based on diffusible morphogens, whereas the interactions between embryonic cells are more often mediated by direct cell contact. For this reason, the myxobacteria have emerged as a contending system in which to study spatial pattern formation, for their colony strutures rival those of D.d. in complexity, yet communication between cells in a colony is carried out by direct cell contacts. Here I sketch some of the progress my laboratory has made in modeling the life cycle of these organisms.

This is a preview of subscription content, access via your institution.

References

  1. Bustamante, V., Martinez-Flores, I., Vlamakis, H., Zusman, D., 2004. Mol. Microbiol. 53, 1501–1513.

    Google Scholar 

  2. Csahok, Z., Czirok, A., 1997. Physica A: Stat. Theor. Phys. 243, 304–318.

    Google Scholar 

  3. Grilione, P., Pangborn, J., 1975. JB 124, 1558–1565.

    Google Scholar 

  4. Holley, S.A., Takeda, H., 2002. Semin. Cell Dev. Biol. 13, 481–488.

    Article  Google Scholar 

  5. Igoshin, I., Goldbeter, A., Kaiser, A.D., Oster, G., 2004a. PNAS 101(44), 15760–15765.

  6. Igoshin, I., Oster, G., 2003. Math. Biosci. 188, 221–233.

    MathSciNet  Google Scholar 

  7. Igoshin, I., Welch, R., Kaiser, D., Oster, G., 2004b. PNAS 101, 4256–4261.

    Article  Google Scholar 

  8. Igoshin, O., Kaiser, D., Oster, G., 2004c. Curr. Biol. 14, R459–R462.

    Article  Google Scholar 

  9. Igoshin, O., Mogilner, A., Welch, R., Kaiser, D., Oster, G., 2001. PNAS 98, 14913–14918.

    Article  Google Scholar 

  10. Igoshin, O., Neu, J., Oster, G., 2004d. Phys. Rev. E 70, 1–11.

    Article  MathSciNet  Google Scholar 

  11. Kaiser, D., 2004. Ann. Rev. Microbiol. 58, 75–98.

    Article  Google Scholar 

  12. Kaiser, D., Welch, R., 2004. J. Bacteriol. 186, 919–927.

    Article  Google Scholar 

  13. Kaiser, D., Yu, R., 2004. Department of Developmental Biology, Stanford University, pp. 1–10.

  14. Lewis, J., 2003. Curr. Biol. 13, 1398–1408.

    Google Scholar 

  15. Maier, B., Koomey, M., Sheetz, M., 2004. PNAS 101, 10961–10966.

    Article  Google Scholar 

  16. Maier, B., Potter, L., So, M., Seifert, H., Sheetz, M., 2002. PNAS 99, 16012–16017.

    Article  Google Scholar 

  17. McBride, M., 2000. Am. Soc. Microbiol. News 66, 203–210.

    Google Scholar 

  18. McBride, M., 2001. Am. Rev. Microbiol. 55, 49–75.

    Article  Google Scholar 

  19. McCarren, J., Heuser, J., Roth, R., Yamada, N., Martone, M., Brahamsha, B., 2005. J. Bacteriol. 187, 224–230.

    Article  Google Scholar 

  20. Mignot, T., Merlie, J., Zusman, D., 2005. Science, 310(5749), 855–857.

    Google Scholar 

  21. Nudleman, E., Kaiser, D., 2004. J. Mol. Microbiol. Biotechnol. 7, 52–62.

    Article  Google Scholar 

  22. Nudleman, E., Wall, D., Kaiser, D., 2005. Science 309, 125–127.

    Article  Google Scholar 

  23. Oster, G., 2004. J. Theor. Biol. 230, 451–458.

    Article  MathSciNet  Google Scholar 

  24. Sager, B., Kaiser, D., 1994. Genes Dev. 8, 2793–2804.

    Article  Google Scholar 

  25. Schweitzer, F., 2003. Brownian Agents and Active Particles: Collective Dynamics in the Natural and Social Sciences. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  26. Sliusarenko, O., Zusman, D., Oster, G., 2006. PNAS 103(5), 1534–1539

    Google Scholar 

  27. Welch, R., Kaiser, D., 2001. PNAS 98, 14907–14912.

    Article  Google Scholar 

  28. Winfree, A., 2001. The Geometry of Biological Time. Springer-Verlag, Berlin, New York.

    MATH  Google Scholar 

  29. Wolgemuth, C., Hoiczyk, E., Kaiser, D., Oster, G., 2002. Curr. Biol. 12, 369–377.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to George Oster.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sliusarenko, O., Chen, J. & Oster, G. From Biochemistry to Morphogenesis in Myxobacteria. Bull. Math. Biol. 68, 1039–1051 (2006). https://doi.org/10.1007/s11538-006-9113-9

Download citation

Key Words

  • Bacterial locomotion
  • Gliding motility
  • Morphogenesis
  • Myxobacteria
  • Myxococcus
  • Pattern formation