Skip to main content
Log in

Behavioural Interactions Selecting for Symmetry and Asymmetry in Sexual Reproductive Systems of Eusocial Species

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Understanding the life-history complex of eusociality has remained an enduring problem in evolutionary ecology, partially because natural selection models have considered traits in relative isolation. I aim for a more inclusive model that uses ecological interactions to predict the evolutionary existence of sexual reproduction, sexual reproduction asymmetry, and sex ratios in eusocial species. Using a two-level selection process, with within-population selection on the sex ratio of the sexual caste and between-population selection on the worker sex ratio and the degree of sexual reproduction asymmetry, it is found that a male-haploid genome and a worker caste of pure females is the evolutionary optimum of most initial conditions when, like in eusocial hymenoptera, there is no pair bond between the sexual male and female. That a diploid genome and a worker caste with both males and females is the evolutionary optimum of most initial conditions when, like in eusocial termites, there is a pair bond. That sex-linked genomes may evolve in diploid eusocials, and that the model will not generally maintain sexual reproduction by itself. These results hold for ploidy-levels that behave as quantitative or discrete traits, over a relatively wide range of the relative investment in a sexual male versus sexual female, and for partial sexual systems where the genomic portion with diploid inheritance is either fixed or random.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, R.D., 1974. The evolution of social behavior. Ann. Rev. Ecol. Syst. 4, 325–384.

    Article  Google Scholar 

  • Boomsma, J.J., 1991. Adaptive colony sex ratios in primitively eusocial bees. Trends Ecol. Evol. 6, 92–95.

    Article  Google Scholar 

  • Bull, J.J. 1983. Evolution of Sex Determining Mechanisms. Benjamin Cummings, Menlo Park, CA.

    Google Scholar 

  • Bulmer, M., 1994. Theoretical Evolutionary Ecology. Sinauer Associates Publishers, MA.

    Google Scholar 

  • Bulmer, M.G., Taylor, P.D., 1981. Worker-queen conflict and sex ratio theory in social Hymenoptera. Heredity 47, 197–207.

    Google Scholar 

  • Choe, J.C., Crespi, B.J., 1997. The Evolution of Social Behavior in Insects and Arachnids. Cambridge University Press, Cambridge.

    Google Scholar 

  • Christiansen, F.B., 1991. On conditions for evolutionary stability for a continuously varying character. Am. Nat. 138, 37–50.

    Article  Google Scholar 

  • Crespi, B.J., 1996. Comparative analysis of the origins and losses of eusociality: Causal mosaics and historical uniqueness. In: Martins, E.P. (Ed.), Phylogenies and the Comparative Method in Animal Behavior. Oxford University Press, New York, pp. 253–287.

    Google Scholar 

  • Crozier, R.H., Luykx, P., 1985. The evolution of termite eusociality is unlikely to have been based on a male-haploid analogy. Am. Nat. 126, 867–869.

    Article  Google Scholar 

  • Crozier, R.H., Pamilo, P., 1996. Evolution of Social Insect Colonies. Sex Allocation and Kin Selection. Oxford University Press, Oxford.

    Google Scholar 

  • Dawkins, R., 1976. The Selfish Gene. Oxford University Press, Oxford.

    Google Scholar 

  • Dawkins, R., 1982. The Extended Phenotype: The Gene as the Unit of Selection. Oxford University Press, Oxford.

    Google Scholar 

  • Duffy, J.E., Morrison, C.L., Rios, R., 2000. Multiple origins of eusociality among sponge-dwelling shrimps (Synalpheus). Evolution 54, 503–730.

    Google Scholar 

  • Eshel, I., 1983. Evolutionary and continuous stability. J. Theor. Biol. 103, 99–111.

    Article  MathSciNet  Google Scholar 

  • Eshel, I., Feldman, M.W., 1984. Initial increase of new mutants and some continuity properties of ESS in two-locus systems. Amazoniana 124, 631–640.

    Google Scholar 

  • Eshel, I., Feldman, M.W., and Bergman, A., 1998. Long-term evolution, short-term evolution, and population genetic theory. J. Theor. Biol. 191, 391–396.

    Article  Google Scholar 

  • Eshel, I., Motro, U., 1981. Kin selection and strong evolutionary stability of mutual help. Theor. Popul. Biol. 19, 420–433.

    Article  MATH  MathSciNet  Google Scholar 

  • Eshel, I., Motro, U., Sansone, E., 1997. Continuous stability and evolutionary convergence. J. Theor. Biol. 185, 333–343.

    Article  Google Scholar 

  • Fisher, R.A., 1930. The Genetical Theory of Natural Selection. Clarendon, Oxford.

    MATH  Google Scholar 

  • Frank, S.A., Crespi, B.J., 1989. Synergism between sib-rearing and sex ratio in Hymenoptera. Behav. Ecol. Sociobiol. 24, 155–162.

    Article  Google Scholar 

  • Gadagkar, R., 1991. On testing the role of genetic asymmetries created by haplodiploidy in the evolution of eusociality in the Hymenoptera. J. Gen. 70, 1–31.

    Article  Google Scholar 

  • Grafen, A., 1986. Split sex ratios and the evolutionary origins of eusociality. J. Theor. Biol. 122, 95–121.

    Article  Google Scholar 

  • Hamilton, W.D., 1964. The genetical evolution of social behaviour. J. Theor. Biol. 7, 1–52.

    Article  Google Scholar 

  • Hamilton, W.D., 1967. Extraordinary sex ratios. Science 156, 477–488.

    Article  Google Scholar 

  • Hamilton, W.D., 1972. Altruism and related phenomena, mainly in social insects. Ann. Rev. Ecol. Syst. 3, 193–232.

    Article  Google Scholar 

  • Hölldobler, B., Wilson, E.O., 1990. The Ants. Springer-Verlag, Berlin.

    Google Scholar 

  • Hull, D., 1980. Individuality and selection. Ann. Rev. Ecol. Syst. 11, 311–332.

    Article  Google Scholar 

  • Hull, D., 1981. Units of evolution: A metaphysical essay. In: Jensen, U.L., Harre, R. (Eds.), The Philosophy of Evolution. Harvester, Brighton, pp. 23–44.

  • Kerr, W.E., 1990. Why are workers in social hymenoptera not males? Rev. Brasil. Genet. 13, 133–136.

    Google Scholar 

  • Kukuk, P.F., Eickwort, G.C., Raveret-Richter, M., Alexander, B., Gibson, R., Morse, R.A., Ratnieks, F., 1989. Importance of the sting in the evolution of sociality in the hymenoptera. Ann. Entomol. Soc. Am. 82, 1–5.

    Google Scholar 

  • Lacy, R.C., 1980. The evolution of eusociality in termites: A haplodiploid analogy? Am. Nat. 116, 449–451.

    Article  Google Scholar 

  • Lacy, R.C., 1984. The evolution of termite eusociality: Reply to Leinaas. Am. Nat. 123, 876–879.

    Article  Google Scholar 

  • Leinaas, H.P., 1983. A haplodiploid analogy in the evolution of termite eusociality? Reply to Lacy. Am. Nat. 121, 302–304.

    Article  Google Scholar 

  • Liberman, U., 1988. External stability and ESS: Criteria for initial increase of a mutant allele. J. Math. Biol. 26, 477–485.

    MATH  MathSciNet  Google Scholar 

  • MacNair, M.R., 1978. An ESS for the sex ratio in animals with particular reference to the social Hymenoptera. J. Theor. Biol. 70, 449–459.

    Article  Google Scholar 

  • Matessi, C., Di Pasquale, C., 1996. Long-term evolution of multilocus traits. J. Theor. Biol. 185, 333–343.

    Google Scholar 

  • Maynard Smith, J., 1968. Evolution in sexual and asexual populations. Am. Nat. 102, 469–473.

    Article  Google Scholar 

  • Maynard Smith, J., 1982. Evolution and the Theory of Games. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Maynard Smith, J., Price, G.R., 1973. The logic of animal conflict. Nature 246, 15–18.

    Article  Google Scholar 

  • Mueller, U.G., 1991. Haplodiploidy and the evolution of facultative sex ratios in a primitively eusocial bee. Science 254, 442–444.

    Article  Google Scholar 

  • Olmland, K.E., 1997. Examining two standard assumptions of ancestral reconstructions: Repeated loss of dichromatism in dabbling ducks (Anatini). Evolution 51, 1636–1646.

    Article  Google Scholar 

  • Oster, G.F., Eshel, I., Cohen, D., 1977. Worker-queen conflict and the evolution of social insects. Theor. Popul. Biol. 12, 49–85.

    Article  MathSciNet  Google Scholar 

  • Pamilo, P., 1991. Evolution of colony characteristics in social insects. Amazoniana 137, 83–107.

    Google Scholar 

  • Reeve, H.K., Sherman, P.W., 2001. Optimality and phylogeny: A critique of current thought. In: Orzack, S.H., and Sober, E. (Eds.), Adaptation and Optimality. Cambridge University Press, Cambridge, pp. 64–113.

    Google Scholar 

  • Rowell, D.M., 1987. Complex sex-linked translocation heterozygosity: Its genetics and biological significance. Trends Ecol. Evol. 2, 242–246.

    Article  Google Scholar 

  • Seger, J., 1983. Partial bivoltinism may cause alternating sex-ratio biases that favour eusociality. Nature 301, 59–62.

    Article  Google Scholar 

  • Shaw, R.F., Mohler, J.D., 1953. The selective advantage of the sex ratio. Amazoniana 87, 337–342.

    Google Scholar 

  • Sober, E., Wilson, D.S., 1998. Unto Others: The Evolution and Psychology of Unselfish Behavior. Harvard University Press, Cambridge.

    Google Scholar 

  • Starr, C.K., 1985. Enabling mechanisms in the origin of sociality in the hymenoptera–the sting’s the thing. Ann. Entomol. Soc. Am. 78, 836–840.

    Google Scholar 

  • Sundström, L., 1994. Sex ratio bias, relatedness asymmetry and queen mating frequency in ants. Nature 367, 266–268.

    Article  Google Scholar 

  • Syren, R.M., Luykx, P., 1977. Permanent segmental interchange complex in the termite Incisitermes schwarzi. Nature 266, 167–168.

    Article  Google Scholar 

  • Taylor, P.D., 1988. Inclusive fitness models with two sexes. Theor. Popul. Biol. 34, 145–168.

    Article  MATH  Google Scholar 

  • Taylor, P.D., 1989. Evolutionary stability in one-parameter models under weak selection. Theor. Popul. Biol. 36, 125–143.

    Article  MATH  Google Scholar 

  • Thorne, B.L., 1997. Evolution of eusociality in termites. Ann. Rev. Ecol. Syst. 28, 27–54.

    Article  Google Scholar 

  • Trivers, R.L., Hare, H., 1976. Haplodiploidy and the evolution of social insects. Science 191, 249–263.

    Article  Google Scholar 

  • West-Eberhard, M.J., 1975. The evolution of social behavior by kin selection. Quart. Rev. Biol. 59, 257–290.

    Google Scholar 

  • Witting, L., 1997. A general Theory of Evolution. By Means of Selection by Density Dependent Competitive Interactions. Peregrine Publisher, URL http://www.peregrine.dk, Århus, 330 pp.

  • Witting, L., 2002. From asexual to eusocial reproduction by multilevel selection by density dependent competitive interactions. Theor. Popul. Biol. 61, 171–195.

    Article  Google Scholar 

  • Witting, L., 2003. Major life-history transitions by deterministic directional natural selection. J. Theor. Biol. 225, 389–406.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Witting.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witting, L. Behavioural Interactions Selecting for Symmetry and Asymmetry in Sexual Reproductive Systems of Eusocial Species. Bull. Math. Biol. 69, 1167–1198 (2007). https://doi.org/10.1007/s11538-006-9112-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-006-9112-x

Keywords

Navigation