Skip to main content

Advertisement

Log in

Simple stochastic fingerprints towards mathematical modeling in biology and medicine. 3. ocular irritability classification model

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

MARCH-INSIDE methodology and a statistical classification method—linear discriminant analysis (LDA)—is proposed as an alternative method to the Draize eye irritation test. This methodology has been successfully applied to a set of 46 neutral organic chemicals, which have been defined as ocular irritant or nonirritant. The model allow to categorize correctly 37 out of 46 compounds, showing an accuracy of 80.46%. Specifically, this model demonstrates the existence of a good categorization average of 91.67 and 76.47% for irritant and nonirritant compounds, respectively. Validation of the model was carried out using two cross-validation tools: Leave-one-out (LOO) and leave-group-out (LGO), showing a global predictability of the model of 71.7 and 70%, respectively. The average of coincidence of the predictions between leave-one-out/leave-group-out studies and train set were 91.3% (42 out of 46 cases)/89.1% (41 out of 46 cases) proving the robustness of the model obtained. Ocular irritancy distribution diagram is carried out in order to determine the intervals of the property where the probability of finding an irritant compound is maximal relating to the choice of find a false nonirritant one. It seems that, until today, the present model may be the first predictive linear discriminant equation able to discriminate between eye irritant and nonirritant chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LDA:

linear discriminant analysis

MAS:

maximum average score

MMAS:

modified maximum average score

QSAR:

quantitative structure–activity relationships

MLR:

multivariate linear regression

PC:

principal components

QSTR:

quantitative structure–toxicity relationships

MC:

Markov chains

MARCH-INSIDE:

Markovian chemicals in sílico design

Log P:

natural logarithm of 1-octanol/water partition coefficient

ROC curve:

receiver operating characteristic curve

TDD:

toxicological distribution diagram

LOO:

leave-one-out

LGO:

leave-group-out

References

  • 84/449/EEC, 1984. Commission Directive of 25 April 1984 adapting to technical progress for the sixth time Council Directive 67/548/EEC on the approximation of laws, regulations and administrative provisions relating to the classification, packaging and labeling of dangerous substances. Off. J. Euro. Commun. L251, 109–112.

  • Abrahan, M.H., Hassanisadi, M., Jalali-Heravi, M., Ghafourian, T., Cain, W.S., Commeto-Muniz, J.E., 2003. Draize rabbit eye test compatibility with eye irritation thresholds in humans: A quantitative structure–activity relationship analysis. Toxicol. Sci. 76, 384–392.

    Article  Google Scholar 

  • Abrahan, M.H., Kumarsingh, R., Commeto-Muniz, J.E., Cain, W.S., 1998. A quantitative structure–activity relatioship (QSAR) for a Draize eye irritation database. Toxicol. In vitro 12, 201–207.

    Article  Google Scholar 

  • Barratt, M.D., 1995. A quantitative structure–activity relationship for the eye irritation potential of neutral organic chemicals. Toxicol. Lett. 80, 69–74.

    Article  PubMed  CAS  Google Scholar 

  • Barratt, M.D., 1997a. QSARs for the eye irritation potential of neutral organic molecules. Toxicol. In vitro 11, 1–8.

    Article  CAS  Google Scholar 

  • Barratt, M.D., 1997b. QSARs for the eye irritation potential of neutral organic molecules. In: Van Zutphen, L.F.M., Balls, M. (Eds.), Animal Alternatives, Welfare and Ethics. Elsevier, The Netherlands.

  • Béliveau, M., Tardif, R., Krishnan, K., 2003. Quantitative structure–property relationships for physiologically based pharmacokinetic modeling of volatile organic chemicals in rats. Toxicol. App. Pharmacol. 189, 221–232.

    Article  Google Scholar 

  • Bridges, J., 1991. Animals and alternatives in toxicology: Present status and future prospects (the second report of the FRAME Toxicity Committee). ATLA 19, 116–128.

    Google Scholar 

  • Broto, P., Moreau, G., Vandycke, C., 1984. Eur. J. Med. Chem-Chim. Ter. 19, 71–76.

    CAS  Google Scholar 

  • Buehler, E.V., Newmann, E.A., 1964. A comparison of eye irritation in monkeys and rabbits. Toxicol. Appl. Pharmacol. 6, 701–710.

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain, M., Barratt, M.D., 1995. Practical applications of QSAR to in vitro toxicology illustrated by consideration of eye irritation. Toxicol. In vitro 9, 543–547.

    Article  CAS  Google Scholar 

  • Christian, M.S., Diener, R.M., 1996. Soaps and detergents—Alternatives to animal eye irritation tests. J. Am. Coll. Toxicol. 15, 1–44.

    CAS  Google Scholar 

  • Clelatt, K.N., 1981. Textbook of Veterinary Ophthalmology. Lea & Febiger, Philadelphia.

    Google Scholar 

  • Cronin, M.T.D., Basketter, D.A., York, M., 1994. A quantitative structure–activity relationship (QSAR) investigation of a Draize eye irritation database. Toxicol. In vitro 8, 21–28.

    Article  CAS  Google Scholar 

  • Cronin, M.T.D., Aynur, A.O., Dearden, C.J., Deffy, C.J., Netzeva, I.T., Patel, H., Rowe, H.P., Schultz, T.W., Worth, P.A., Voutzolidis, K., Schürmann, G.J., 2002. Structure-based classification of antibacterial activity. Chem. Inf. Comput. Sci. 42, 869–878.

    Article  CAS  Google Scholar 

  • Cruz-Monteagudo, M., González-Díaz, H., 2005a. Unified drug–target interaction thermodynamic Markov model using stochastic entropies to predict multiple drugs side effects. Eur. J. Med. Chem. 40, 1030–1041.

    Article  CAS  Google Scholar 

  • Cruz-Monteagudo, M., González-Díaz, H., 2005b. Simple stochastic fingerprints towards mathematical modeling in biology and medicine. 2. Unify Markov model for drugs side effects. Bull. Math. Biol. (accepted for publication).

  • Draize, J.H., Woodgard, G., Calvery, H.O., 1944. Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J. Pharmacol. Exp. Therap. 82, 377–390.

    CAS  Google Scholar 

  • EC B.5, 2004. Commission Directive 2004/73/EC of 29 April 2004 adapting to technical process for the 29th time Council Directive 67/548/EEC on the approximation of laws, regulations and administrative provisions relating to the classification, packaging and labeling of dangerous substances. Off. J. Eur. Union L152, 1–316.

  • ECIETC, 1992. European Chemical Industry Ecology and Toxicology Centre. Technical Report No. 48. Eye Irritation: Reference compounds Data Bank, Brussels.

  • Eskes, C., Bessou, S., Bruner, L., Curren, R., Harbell, J., Jones, P., Kreiling, R., Liebsch, M., McNamee, P., Pape, W., Prinsen, M.K., Seidle, T., Vanparys, P., Worth, A., Zuang, V., 2005. Eye irritation. In: Eskes, C., Zuang, V. (Eds.), Alternatives (Non-Animal) Methods for Cosmetics Testing: Current Status and Future Prospects (A report prepared in the context of the 7th amendment of the cosmetics directive for establishing the timetable for phasing out animal testing). ATLA 33, 47–81.

  • Freund, J.A., Poschel, T., 2000. Stochastic processes in physics, chemistry, and biology. In: Lecture Notes in Physics. Springer, Berlin, Germany.

  • Gálvez, J., García-Domenech, R., de Gregorio-Alapont, C., de Julián-Ortiz, J.V., Popa, L.J., 1996. Pharmacological distribution diagrams: A tool for de novo drug design. J. Mol. Graph. 14, 272–276.

    Article  PubMed  Google Scholar 

  • Gerner, I., Libes, M., Spielman, H., 2005. Assessment of the eye irritating properties of chemicals by applying alternatives to the Draize rabbit eye test: The use of QSARs and in vitro tests for the classification of eye irritation. ATLA 33, 215–237.

    PubMed  CAS  Google Scholar 

  • Ghose, A.K., Crippen, G.M., 1987. Atomic physicochemical parameters for three-dimensional-structure-directed quantitative structure–activity relationships. 2. Modeling dispersive and hydrophobic interactions. J. Chem. Inf. Comput. Sci. 27, 21–35.

    Article  PubMed  CAS  Google Scholar 

  • González, D.H., Marrero, Y., Hernández, I., Bastida, I., Tenorio, E., Nasco, O., Uriarte, E., Castañedo, N., Cabrera, M.A., Aguila, E., Marrero, O., Morales, A., Pérez, M., 2003a. 3D-MEDNEs: An alternative “in silico' technique for chemical research in toxicology. 1. Prediction of chemically induced agranulocytosis. Chem. Res. Toxicol. 16, 1318–1327.

    Article  Google Scholar 

  • González-Díaz, H., Ramos de A, R., Molina, R.R., 2003b. Markovian negentropies in bioinformatics. 1. A picture of footprints after the interaction of the HIV-1 ψ-RNA packaging region with drugs. Bioinformatics 19, 2079–2087.

    Article  Google Scholar 

  • González-Díaz, H., Gia, O., Uriarte, E., Hernádez, I., Ramos, R., Chaviano, M., Seijo, S., Castillo, J.A., Morales, L., Santana, L., Akpaloo, D., Molina, E., Cruz-Monteagudo, M., Torres, L.A., Cabrera, M.A., 2003c. Markovian chemicals “in silico” design (MARCH-INSIDE), a promising approach for computer-aided molecular design I: Discovery of anticancer compounds. J. Mol. Model. 9, 395–407.

    Article  Google Scholar 

  • González-Díaz, H., Hernández, S.I., Uriarte, E., Santana, L., 2003d. Symmetry considerations in Markovian chemicals “in silico” design (MARCH-INSIDE) I: Central chirality codification, classification of ACE inhibitors and prediction of s-receptor antagonist activities. Comput. Biol. Chem. 27, 217–227.

    Article  Google Scholar 

  • González-Díaz, H., Olazábal, E., Castañedo, N., Hernádez, S.I., Morales, A., Serrano, H.S., González, J., Ramos de A, R., 2002a. Markovian chemicals “in silico” design (MARCH-INSIDE), a promising approach for computer aided molecular design II: Experimental and theoretical assessment of a novel method for virtual screening of fasciolicides. J. Mol. Model. 8, 237–245.

    Article  Google Scholar 

  • González-Díaz, H., Ramos de A, R., Uriarte, E., 2002b. In silico Markovian bioinformatics for predicting 1Hα-NMR chemical shifts in mouse epidermis growth factor (mEGF). Online J. Bioinf. 1, 83–95.

    Google Scholar 

  • González-Díaz, H., Tenorio, E., Castañedo, N., Santana, L., Uriarte, E., 2005a. 3D QSAR Markov model for drug-induced eosinophilia—theoretical prediction and preliminary experimental assay of the antimicrobial drug G1. Bioorg. Med. Chem. 13, 1523–1530.

    Article  Google Scholar 

  • González-Díaz, H., Cruz-Monteagudo, M., Molina, R., Tenorio, E., Uriarte, E., 2005b. Predicting multiple drugs side effects with a general drug–target interaction thermodynamic Markov model. Bioorg. Med. Chem. 13, 1119–1129.

    Article  Google Scholar 

  • González-Díaz, H., Molina, R.R., Uriarte, E., 2004a. Stochastic molecular descriptors for polymers. 1. Modelling the properties of icosahedral viruses with 3D-Markovian negentropies. Polymer 45, 3845–3853.

    Article  Google Scholar 

  • González-Díaz, H., Molina, R.R., Uriarte, E., 2004b. Markov entropy backbone electrostatic descriptors for predicting proteins biological activity. Bioorg. Med. Chem. Lett. 14, 4691–4695.

    Article  Google Scholar 

  • Hernández, I., González, H., 2002. MARCH-INSIDE version 1.0 (Markovian chemicals ‘in silico’ design). Chemicals Bio-actives Center, Central University of ‘Las Villas’, Cuba. This is a preliminary experimental version, a future professional version shall be available to the public. For any information about it, send e-mail to the corresponding author humbertogd@usc.es or humbertogd@uclv.edu.cu.

  • Jacobs, G.A., Martens, M.A., 1989. An objective method for the evaluation of eye irritation in vivo. Food. Chem. Toxicol. 27, 255–258.

    Article  PubMed  CAS  Google Scholar 

  • Kaufman, S.R., 1989. http://www.curedisease.com/Perspectives/vol_1_1989/Problem with the Draize.html. (A report from Americans For Medical Advancement, Index of /Perspectives/vol 1).

  • Kochel, B., Sajewicz, W., 1997. A new measure of xenobiotic toxicity to the first-line human defence system from the time-resolved phagocyte luminescence. Bull. Math. Biol. 59, 897–910.

    PubMed  CAS  MATH  Google Scholar 

  • Kowalski, R.B., Wold, S., 1982. Pattern recognition in chemistry. In: Krishnaiah, P.R., Kanal, L.N. (Eds.), Handbook of Statistics. NorthHolland Publishing Company, Amsterdam, pp. 673–697.

  • Kulkarni, A.S., Hopfinger, A.J., 1999. Membrane-interaction QSAR analysis: Application to the estimation of eye irritation by organic compounds. Pharm. Res. 16, 1245–1253.

    Article  PubMed  CAS  Google Scholar 

  • Lordo, R.A., Feder, P.I., Gettings, S.D., 1999. Comparing and evaluating alternative (in vitro) tests on their ability to predict the Draize maximum average score. Toxicol. In vitro 13, 45–72.

    Article  CAS  Google Scholar 

  • Mariussen, E., Andersson, P.L., Tysklind, M., Fonnum, F., 2001. Effect of polychlorinated biphenyls on the uptake of dopamine into rat brain synaptic vesicles: A structure–activity study. Toxicol. Appl. Pharmacol. 175, 176–183.

    Article  PubMed  CAS  Google Scholar 

  • OECD, 1987. Guidelines for Testing of Chemicals, Test Guidelines 405: Acute Eye Irritation/Corrosion. Adopted 24 February 1987. Organization for Economic Cooperation and Development.

  • OECD TG 405, 2002. OECD Guidelines for the Testing of Chemicals NO. 405: Acute Eye Irritation/Corrosion. Organization for Economic Cooperation and Development, Paris, France, pp. 14.

  • Ohno, Y., Kaneko, T., Inoue, T., Mirokawa, Y., Yoshida, T., Fuji, A., Masuda, M., Ohno, T., Hayashi, M., Momma, J., Uchiyama, T., Chiba, K., Ikeda, N., Imanashi, Y., Itakagaki, H., 1999. Interlaboratory validation of the in vitro eye irritation tests for cosmetic ingredients. (1) Overview of the validation study and Draize scores for the evaluation of the tests. Toxicol. In vitro 13, 73–98.

    Article  CAS  Google Scholar 

  • Patlewicz, G.Y., Rodford, R.A., Ellis, G., Barratt, M.D., 2000. A QSAR model for the eye irritation of cationic surfactants. Toxicol. In vitro 14, 79–84.

    Article  PubMed  CAS  Google Scholar 

  • Pauling, L., 1939. The Nature of Chemical Bond, Ithaca, New York: Cornell University Press, pp. 2–60.

  • Prince, J.H., Diesem, C.D., Eglitis, I., Ruskell, G.L., 1960. Anatomy and Histology of the Eye and Orbit in Domestic Animals. Charles C. Thomas, Springfield.

  • Ramos de A, R., González-Díaz, H., Molina, R.R., Uriarte, E., 2004a. Markovian Backbone Negentropies: Molecular descriptors for protein research. I. Predicting protein stability in Arc repressor mutants. Proteins Struct. Funct. Bioinf. 56, 715–723.

    Article  Google Scholar 

  • Ramos de A, R., González-Díaz, H., Molina, R., González, M.P., Uriarte, E., 2004b. Stochastic-based descriptors studying peptides biological properties: Modeling the bitter tasting threshold of dipeptides. Bioorg. Med. Chem. 12, 4815–4822.

    Article  Google Scholar 

  • Randić, M., 1991a. Resolution of ambiguities in quantitative structure–property studies by use of orthogonal descriptors. J. Chem. Inf. Comput. Sci. 31, 311–320.

    Article  Google Scholar 

  • Randić, M., 1991b. Orthogonal molecular descriptors. New J. Chem. 15, 517–525.

    Google Scholar 

  • Randić, M., 1991c. Correlation of enthalpy of octanes with orthogonal connectivity indices. J. Mol. Struct. (THEOCHEM), 233, 45–59.

    Article  Google Scholar 

  • Riviere, J.E., Brooks, J.D., 2005. Predicting skin permeability from complex chemical mixtures. Toxicol. App. Pharmacol. doi:10.1016/j.taap.2005.02.016.

  • Saunders, L.Z., Rubin, L.F., 1975. Ophthalmic Pathology in Animals. Karger, S. New York.

  • Sharpe, R., 1985. The Draize test-motivations for change. Food Chem. Toxicol. 23, 139–143.

    Article  PubMed  CAS  Google Scholar 

  • STATISTICA, 2001. Version. 6.0, Statsoft, Inc.

  • Swanston, D.W., 1983. Eye irritancy testing. In: Balls, M., Riddell, R.J., Warden, A.N. (Eds.), Animals and Alternatives in Toxicity Testing. Academic Press, New York, pp. 337–367.

  • Van Waterbeemd, H., 1995. Discriminant analysis for activity prediction. In: Method and Principles in Medicinal Chemistry, Manhnhold, R., Krogsgaard-Larsen, P., Timmerman, H. (Eds.), Vol. 2, pp. 265–282. In: Chemometric Methods in Molecular Design. VCH, Weinhiem.

  • Vedani, A., Dobler, M., Lill, M.A., 2005. In silico prediction of harmful effects triggered by drugs and chemicals. Toxicol. App. Pharmacol. 207(2), Suppl. 1, 398–407.

    Google Scholar 

  • Waller, C.L., Juma, B.W., Gray, L.E. Jr., Kelce, W.R., 1996. Three-dimensional quantitative structure–activity relationships for androgen receptor ligands. Toxicol. App. Pharmacol. 137, 219–227.

    Article  CAS  Google Scholar 

  • Weil, C.S., Scala, R.A., 1971. Study of intra- and interlaboratory variability in the results of rabbit eye and skin irritation tests. Toxicol. App. Pharmacol. 19, 276–360.

    Article  CAS  Google Scholar 

  • Worth, A.P., Cronin, M.T.D., 2000. Structure-permeability relationships for transcorneal penetration. ATLA 28, 403–413.

    Google Scholar 

  • Zinke, S., Gerner, I., Graetshel, G., Schlede, E., 1999. Local irritation/corrosion testing strategies: Development of a decision support system for the introduction of alternative methods. ATLA 28, 29–40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humberto González-Díaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cruz-Monteagudo, M., González-Díaz, H., Borges, F. et al. Simple stochastic fingerprints towards mathematical modeling in biology and medicine. 3. ocular irritability classification model. Bull. Math. Biol. 68, 1555–1572 (2006). https://doi.org/10.1007/s11538-006-9083-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-006-9083-y

Keywords

Navigation