The Modeling of Global Epidemics: Stochastic Dynamics and Predictability

Abstract

The global spread of emergent diseases is inevitably entangled with the structure of the population flows among different geographical regions. The airline transportation network in particular shrinks the geographical space by reducing travel time between the world's most populated areas and defines the main channels along which emergent diseases will spread. In this paper, we investigate the role of the large-scale properties of the airline transportation network in determining the global propagation pattern of emerging diseases. We put forward a stochastic computational framework for the modeling of the global spreading of infectious diseases that takes advantage of the complete International Air Transport Association 2002 database complemented with census population data. The model is analyzed by using for the first time an information theory approach that allows the quantitative characterization of the heterogeneity level and the predictability of the spreading pattern in presence of stochastic fluctuations. In particular we are able to assess the reliability of numerical forecast with respect to the intrinsic stochastic nature of the disease transmission and travel flows. The epidemic pattern predictability is quantitatively determined and traced back to the occurrence of epidemic pathways defining a backbone of dominant connections for the disease spreading. The presented results provide a general computational framework for the analysis of containment policies and risk forecast of global epidemic outbreaks.

References

  1. Albert, R., Barabási, A.-L., 2000. Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97.

    Article  Google Scholar 

  2. Amaral, L.A.N., Scala, A., Barthélemy, M., Stanley, H.E., 2000. Classes of small-world networks. Proc. Natl. Acad. Sci. U.S.A. 97, 11149–11152.

    Article  Google Scholar 

  3. Anderson, R.M., May, R.M., 1992. Infectious Diseases in Humans. Oxford University Press, Oxford, p. 4

    Google Scholar 

  4. Baroyan, O.V., Genchikov, L.A., Rvachev, L.A., Shashkov, V.A., 1969. An attempt at large-scale influenza epidemic modelling by means of a computer. Bull. Int. Epidemiol. Assoc. 18, 22–31.

    Google Scholar 

  5. Barrat, A., Barthélemy, M., Pastor-Satorras, R., Vespignani, A., 2004. The architecture of complex weighted networks. Proc. Natl. Acad. Sci. U.S.A. 101, 3747–3752.

    Article  Google Scholar 

  6. Chowell, G., Hyman, J.M., Eubank, S., Castillo-Chavez, C., 2003. Scaling laws for the movement of people between locations in a large city. Phys. Rev. E 68, 066102.

    Article  Google Scholar 

  7. Cliff, A., Haggett, P., 2004. Time, travel and infection. Br. Med. Bull. 69, 87–99.

    Article  Google Scholar 

  8. Cohen, M.L., 2000. Changing patterns of infectious disease. Nature 406, 762–767.

    Article  Google Scholar 

  9. Dickman, R., 1994. Numerical study of a field theory for directed percolation. Phys. Rev. E 50, 4404–4409.

    Article  Google Scholar 

  10. Dorogovtsev, S.N., Mendes, J.F.F., 2003. Evolution of Networks: From Biological Nets to the Internet and WWW. Oxford University Press, Oxford.

    Google Scholar 

  11. Eubank, S., Guclu, H., Anil Kumar, V.S., Marathe, M.V., Srinivasan, A., Toroczkai, Z., Wang, N., 2004. Modelling disease outbreaks in realistic urban social networks. Nature 429, 180–184.

    Article  Google Scholar 

  12. Ferguson, N.M., Keeling, M.J., Edmunds, W.J., Gani, R., Grenfell, B.T., Anderson, R.M., Leach, S., 2003. Planning for smallpox outbreaks. Nature 425, 681–685.

    Article  Google Scholar 

  13. Flahault, A., Valleron, A.-J., 1991. A method for assessing the global spread of HIV-1 infection based on air-travel. Math. Pop. Studies 3, 1–11.

    Google Scholar 

  14. Gardiner W.C., 2004. Handbook of Stochastic Methods for Physics, Chemistry and Natural Sciences, 3rd ed. Springer, New York.

    Google Scholar 

  15. Gastner, M.T., Newman, M.E.J., 2004. Diffusion-based method for producing density-equalizing maps. Proc. Natl. Acad. Sci. U.S.A. 101, 7499–7504.

    MATH  Article  MathSciNet  Google Scholar 

  16. Gillespie, D.T., 2000. The chemical Langevin equation. J. Chem. Phys. 113, 297–306.

    Article  Google Scholar 

  17. Grais, R.F., Hugh Ellis, J., Glass, G.E., 2003. Assessing the impact of airline travel on the geographic spread of pandemic influenza. Eur. J. Epidemiol. 18, 1065–1072.

    Article  Google Scholar 

  18. Grais, R.F., Hugh Ellis, J., Kress, A., Glass, G.E., 2004. Modeling the spread of annual influenza epidemics in the U.S.: The potential role of air travel. Health Care Manage. Sci. 7, 127–134.

    Article  Google Scholar 

  19. Guimerà, R., Mossa, S., Turtschi, A., Amaral, L.A.N., 2005. The worldwide air transportation network: Anomalous centrality, community structure, and cities’ global roles. Proc. Natl. Acad. Sci. U.S.A. 102, 7794–7799.

    Article  Google Scholar 

  20. Hethcote, H.W., Yorke, J.A., 1984. Gonnorhea: Transmission Dynamics and Control. Lecture Notes in Biomathematics 56. Springer-Verlag, Berlin.

    Google Scholar 

  21. Hufnagel, L., Brockmann, D., Geisel, T., 2004. Forecast and control of epidemics in a globalized world. Proc. Natl. Acad. Sci. U.S.A. 101, 15124–15129.

    Article  Google Scholar 

  22. Institute of Medicine 1992. Emerging Infections: Microbial Threats to Health in the United States. National Academy Press, Washington, DC.

  23. Keeling, M.J., 1999. The effects of local spatial structure on epidemiological invasions. Proc. R. Soc. Lond. B 266, 859–867.

    Article  Google Scholar 

  24. Keeling, M.J., et al., 2001. Dynamics of the 2001 UK foot and mouth epidemic: Stochastic dispersal in a heterogeneous landscape. Science 294, 813–817.

    Article  Google Scholar 

  25. Kretzschmar, M., Morris, M., 1996. Measures of concurrency in networks and the spread of infectious disease. Math. Biosci. 133, 165–195.

    MATH  Article  Google Scholar 

  26. Lipsitch, M. et al., 2003. Transmission dynamics and control of Severe Acute Respiratory Syndrome. Science 300, 1966.

    Article  Google Scholar 

  27. Lee, L., 1999. Paper presented in the 37th Annual Meeting of the Association for Computational Linguistics, pp. 25–32.

  28. Lloyd, A.L., May, R.M., 2001. How viruses spread among computers and people. Science 292, 1316–1317.

    Article  Google Scholar 

  29. Longini, I.M., 1988. A mathematical model for predicting the geographic spread of new infectious agents. Math. Biosci. 90, 367–383.

    Article  MathSciNet  Google Scholar 

  30. Marro, J., Dickman, R., 1998. Nonequilibrium Phase Transitions and Critical Phenomena. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  31. Meyers, L.A., Pourbohloul, B., Newman, M.E.J., Skowronski, D.M., and Brunham, R.C., 2005. Network theory and SARS: Predicting outbreak diversity. J. Theor. Biol. 232, 71–81.

    Article  MathSciNet  Google Scholar 

  32. Murray, J.D., 1993. Mathematical Biology, 2nd ed. Springer, New York.

    Google Scholar 

  33. Pastor-Satorras, R., Vespignani, A., 2001. Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 3200–3203.

    Article  Google Scholar 

  34. Pastor-Satorras, R., Vespignani, A., 2003. Evolution and Structure of the Internet: A Statistical Physics Approach. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  35. Riley, S., et al., 2003. Transmission dynamics of the etiological agent of SARS in Hong Kong: Impact of public health interventions. Science 300, 1961–1966.

    Article  Google Scholar 

  36. Rvachev, L.A., Longini, I.M., 1985. A mathematical model for the global spread of influenza. Math. Biosci. 75, 3–22.

    MATH  Article  MathSciNet  Google Scholar 

  37. Wong, S.K.M., Yao Y.Y., 1987. SIGIR '87: Proceedings of the 10th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM Press, New York, pp. 3–12.

    Google Scholar 

  38. Zipf, G.K., 1949. Human Behavior and the Principle of Least Efforts. Addison-Wesley, Reading, MA.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. Colizza.

Additional information

On leave from CEA-Centre d'Etudes de Bruyères-Le-Châtel, France.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Colizza, V., Barrat, A., Barthélemy, M. et al. The Modeling of Global Epidemics: Stochastic Dynamics and Predictability. Bull. Math. Biol. 68, 1893–1921 (2006). https://doi.org/10.1007/s11538-006-9077-9

Download citation

Keywords

  • Complex networks
  • Epidemiology