Mathematical Models for Hantavirus Infection in Rodents

  • Linda J. S. Allen
  • Robert K. McCormack
  • Colleen B. Jonsson
Original Article

Abstract

Hantavirus pulmonary syndrome is an emerging disease of humans that is carried by wild rodents. Humans are usually exposed to the virus through geographically isolated outbreaks. The driving forces behind these outbreaks is poorly understood. Certainly, one key driver of the emergence of these viruses is the virus population dynamics within the rodent population. Two new mathematical models for hantavirus infection in rodents are formulated and studied. The new models include the dynamics of susceptible, exposed, infective, and recovered male and female rodents. The first model is a system of ordinary differential equations while the second model is a system of stochastic differential equations. These new models capture some of the realistic dynamics of the male/female rodent hantavirus interaction: higher seroprevalence in males and variability in seroprevalence levels.

Keywords

hantavirus SEIR epidemic model stochastic differential equation 

References

  1. Abramson, G., Kenkre, V.M., 2002. Spatiotemporal patterns in hantavirus infection. Phys. Rev. E 66, 011912, 1–5.CrossRefGoogle Scholar
  2. Abramson, G., Kenkre, V.M., Yates, T.L., Parmenter, R.R., 2003. Traveling waves of infection in the hantavirus epidemics. Bull. Math. Biol. 65, 519–534.CrossRefPubMedGoogle Scholar
  3. Allen, E.J., 1999. Stochastic differential equations and persistence time for two interacting populations. Dyn. Cont. Discrete Impulsive Syst. 5, 271–281.MATHGoogle Scholar
  4. Allen, L.J.S., Allen, E.J., 2003. A comparison of three different stochastic population models with regard to persistence time. Theor. Pop. Biol. 64, 439–449.CrossRefMATHGoogle Scholar
  5. Allen, L.J.S., 2003. An Introduction to Stochastic Processes with Applications to Biology. Prentice Hall: Upper Saddle River, N.J.Google Scholar
  6. Allen, L.J.S., Cormier, P.J., 1996. Environmentally-driven epizootics. Math. Biosci. 131, 51–80.CrossRefPubMedMATHGoogle Scholar
  7. Allen, L.J.S., Langlais, M., Phillips, C., 2003. The dynamics of two viral infections in a single host population with applications to hantavirus. Math. Biosci. 186, 191–217.CrossRefPubMedMATHMathSciNetGoogle Scholar
  8. Caswell, H., 2001. Matrix Population Models: Construction, Analysis and Interpretation. 2nd ed. Sinauer Associates, Sunderland, MA.Google Scholar
  9. Bernshtein, A.D., Apekina, N.S., Mikhailova, T.V., Myasnikov Y.A., Khlyap, L.A., Korotkov, Y.S., Gavrilovskaya, I.N., 1999. Dynamics of Puumala hantavirus infection in naturally infected bank voles (Clethrinomys glareolus). Arch. Virol. 144, 2415–2428.CrossRefPubMedGoogle Scholar
  10. CDC MMWR, 2002. Hantavirus pulmonary syndrome—United States: Updated recommendations for risk reduction, July 26, 2002, 51 (RR09), 1–12.Google Scholar
  11. CDC NCID, 2004. Special Pathogens Branch. El Niño Special Report: Could El Niño cause an outbreak of hantavirus disease in the southwestern United States? Last reviewed June 18, 2004. Retrieved from http://www.cdc.gov/ncidod/diseases/hanta/hps/noframes/elnino.htm
  12. Childs, J.E., Ksiazek, T.G., Spiropoulou, C.F., Krebs, J.W., Morzunov, S., Maupin, G.O., Gage, K.L., Rollin, P.E., Sarisky, J., Enscore, R.E., Frey, J.K., Peters, C.J., Nichol, S.T., 1994. Serologic and genetic identification of Peromyscus maniculatus as the primary rodent reservoir for a new hantavirus in the Southwestern United States. J. Infect. Dis. 169, 1271–1280.PubMedGoogle Scholar
  13. Chu, Y.-K., Owen, R.D., Gonzalez, L., Jonsson, C.B., 2003. The complex ecology of hantavirus in Paraguay. Am. J. Trop. Med. Hyg. 69, 263–268.PubMedGoogle Scholar
  14. Davis, B., Schmidley, D.J., 1994. The Mammals of Texas. Texas Parks and Wildlife Press, Austin, TX.Google Scholar
  15. Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.J., 1990. On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–382.CrossRefPubMedMathSciNetMATHGoogle Scholar
  16. Glass, G.E., Livingston, W., Mills, J.N., Hlady, W.G., Fine, J.B., Biggler, W., Coke, T., Frazier, D., Atherley, S., Rollin, P.E., Ksiazek, T.G., Peters, C.J., Childs, J.E., 1998. Black Creek Canal Virus infection in Sigmodon hispidus in southern Florida. Am. J. Trop. Med. Hyg. 59, 699–703.PubMedGoogle Scholar
  17. Hethcote, H.W., 2000. The mathematics of infectious disease. SIAM Rev. 42, 599–653.CrossRefMATHMathSciNetGoogle Scholar
  18. Iannelli, M., Martcheva, M., Milner, F.A., 2005. Gender-Structured Population Modeling Mathematical Methods, Numerics, and Simulations. SIAM Frontiers in Applied Mathematics, Philadelphia, PA.Google Scholar
  19. Kirupaharan, N., Allen, L.J.S., 2004. Coexistence of multiple pathogen strains in stochastic epidemic models with density-dependent mortality. Bull. Math. Biol. 66, 841–864.CrossRefPubMedMathSciNetGoogle Scholar
  20. Klein, S.L., Bird, B.H., Glass, G.E., 2001. Sex differences in immune responses and viral shedding following Seoul virus infection in Norway rats. Am. J. Trop. Med. Hyg. 65, 57–63.PubMedGoogle Scholar
  21. Kloeden, P.E., Platen, E., 1992. Numerical Solution of Stochastic Differential Equations. Springer-Verlag, New York.MATHGoogle Scholar
  22. Kloeden, P.E., Platen, E., Schurz, H., 1997. Numerical Solution of SDE through Computer Experiments. Springer-Verlag, Berlin.Google Scholar
  23. Ksiazek, T.G., Nichol, S.T., Mills, J.N., Groves, M.G., Wozniak, A., McAdams, S., Monroe, M.C., Johnson, A.M., Martin, M.L., Peters, C.J., Rollin, P.E., 1997. Isolation, genetic diversity, and geographic distribution of Bayou virus (Bunyaviridae: Hantavirus) Am. J. Trop. Med. Hyg. 57, 445–448.Google Scholar
  24. Langlois, J.P., Fahrig, L., Merriam, G., Artsob, H., 2001. Landscape structure influences continental distribution of hantavirus in deer mice. Landscape Ecol. 16, 255–266.CrossRefGoogle Scholar
  25. Lee, H.W., van der Groen, G., 1989. Hemorrhagic fever with renal syndrome. Prog. Med. Virol. 36, 92–102.Google Scholar
  26. McIntyre, N.E., Chu, Y.K., Owen, R.D., Abuzeineh, A., De La Sancha, N., Dick, C.W., Holsomback, T., Nisbet, R.A., Jonsson, C., 2005. A longitudinal study of Bayou virus, hosts, and habitat. Am. J. Trop. Med. Hyg. 73(6), 1043–1049.Google Scholar
  27. Mena-Lorca, J., Hethcote, H.W., 1992. Dynamic models of infectious diseases as regulators of population sizes. J. Math. Biol. 30, 693–716.PubMedMATHCrossRefMathSciNetGoogle Scholar
  28. Mills, J.N., Ksiazek, T.G., Ellis, B.A., Rollin, P.E., Nichol, S.T., Yates, T.L., Gannon, W.L., Levy, C.E., Engelthaler, D.M., Davis, T., Tanda, D.T., Frampton, J.W., Nichols, C.R., Peters, C.J., Childs, J.E., 1997. Patterns of association with mammals in the major biotic communities of the southwestern United States. Am. J. Trop. Med. Hyg. 56, 273–284.PubMedGoogle Scholar
  29. Monroe, M.C., Morzunov, S.P., Johnson, A.M., Bowen, M.D., Artsob, H., Yates, T., Peters, C.J., Rollin. P.E., Ksizaek, T.G., Nichol, S.T., 1999. Genetic diversity and distribution of Peromyscus-borne hantaviruses in North America. Emerg. Infect. Dis. 5, 75–86.PubMedGoogle Scholar
  30. Plyusnin, A., Morzunov, S.P., 2001. Virus evolution and genetic diversity of hantaviruses and their rodent hosts. Curr. Top. Microbiol. Immunol. 256, 47–75.PubMedGoogle Scholar
  31. Sauvage, F., Langlais, M., Yoccoz, N.G., Pontier, D., 2003. Modelling hantavirus in fluctuating populations of bank voles: The role of indirect transmission on virus persistence. J. Anim. Ecol. 72, 1–13.CrossRefGoogle Scholar
  32. Schmaljohn, C., Hjelle, B., 1997. Hantaviruses: A global disease problem. Emerg. Infect. Dis. 3, 95–104.PubMedCrossRefGoogle Scholar
  33. Song, J.W., Baek, L.J., Gajdusek, D.C., Yanagihara, R., Gavrilovskaya, I., Luft, B.J., Mackow, E.R., Hjelle, B., 1994. Isolation of pathogenic hantavirus from white-footed mouse (Peromyscus leucopus). Lancet 344, 1637.Google Scholar
  34. van den Driessche, P., Watmough, J., 2002. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48.CrossRefPubMedMATHMathSciNetGoogle Scholar
  35. Yahnke, C.J., Meserve, P.L., Ksiazek, T.G., Mills, J.N., 2001. Patterns of infection with Laguna Negra virus in wild populations of Calomys laucha in the central Paraguayan chaco. Am. J. Trop. Med. Hyg. 65, 768–776.PubMedGoogle Scholar

Copyright information

© Society for Mathematical Biology 2006

Authors and Affiliations

  • Linda J. S. Allen
    • 1
  • Robert K. McCormack
    • 1
  • Colleen B. Jonsson
    • 2
  1. 1.Department of Mathematics and StatisticsTexas Tech UniversityLubbockUnited States of America
  2. 2.Department of Biochemistry and Molecular Biology and Department of Emerging PathogensSouthern Research InstituteSouth BirminghamUnited States of America

Personalised recommendations