Skip to main content
Log in

A Brownian Dynamics Model of Kinesin in Three Dimensions Incorporating the Force-Extension Profile of the Coiled-Coil Cargo Tether

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The kinesin family of motor proteins are involved in a variety of cellular processes that transport materials and generate force. With recent advances in experimental techniques, such as optical tweezers can probe individual molecules, there has been an increasing interest in understanding the mechanisms by which motor proteins convert chemical energy into mechanical work. Here we present a mathematical model for the chemistry and three dimensional mechanics of the kinesin motor protein which captures many of the force dependent features of the motor. For the elasticity of the tether that attaches cargo to the motor we develop a method for deriving the non-linear force-extension relationship from optical trap data. For the kinesin heads, cargo, and microscope stage we formulate a three dimensional Brownian Dynamics model that takes into account excluded volume interactions. To efficiently compute statistics from the model, an algorithm is proposed which uses a two step protocol that separates the simulation of the mechanical features of the model from the chemical kinetics of the model. Using this approach for a bead transported by the motor, the force dependent average velocity and randomness parameter are computed and compared with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walker, P., 2002. Molecular Biology of the Cell. Garland Publishing, New York.

    Google Scholar 

  • Amos, L.A., 2000. Focusing-in on microtubule. Curr. Opin. Struc. Biol. 10, 236–241.

    Article  Google Scholar 

  • Astumian, R.D., Derenyi, I., 1999. A chemically reversible brownian motor: Application to kinesin and ncd. Biophys. J. 77, 993–1002.

    Google Scholar 

  • Berliner, E., 1995. Failure of a single-headed kinesin to track parallel to microtubule protofilaments. Nature 373(23), 718–721.

    Article  Google Scholar 

  • Block, S., Asbury, C., Shaevitz, J., Lang, M., 2003. Probing the kinesin reaction cycle with a 2d optical force clamp. Proc. Natl. Acad. Sci. U.S.A. 100, 2351–2356.

    Article  Google Scholar 

  • Bustamante, C., Keller, D., Oster, G., 2001. The physics of molecular motors. Acc. Chem. Res. 34(6), 412–420.

    Article  Google Scholar 

  • Case, R.B., Rice, S., Hart, C.L., Ly, B., Vale, R., 2000. Role of the kinesin neck linker and catalytic core in microtubule-based motility. Curr. Biol. 10, 157–160.

    Article  Google Scholar 

  • Chen, Y., Yan, B., Rubin, R.J., 2002. Fluctuations and randomness of movement of bead powered by a single kinesin molecule in a force-clamped motility array: Monte-carlo simulations. Biophys. J. 83, 2360–2369.

    Google Scholar 

  • Coppin, C., Finer, J.T., Spudich, J.A., Vale, R.D., 1996. Detection of sub-8-nm movements of kinesin by high-resolution optica-trap microscopy. Proc. Natl. Acad. Sci. U.S.A. 93, 1913–1817.

    Article  Google Scholar 

  • Coppin, C., Pierce, D., Hsu, L., Vale, R., 1997. The load dependence of kinesin's mechanical cycle. Proc. Natl. Acad. Sci. U.S.A. 94, 8539–8544.

    Article  Google Scholar 

  • Coy, D.L., Wagenbach, M., Howard, J., 1999. Kinesin takes one 8-nm step for each atp that it hydrolyzes. J. Biol. Chem. 274, 3667–3671.

    Article  Google Scholar 

  • Cross, R.A., 2004. The kinetic mechanism of kinesin. Trends Biochem. Sci. 29(6), 301–307.

    Article  Google Scholar 

  • Cross, R.A., Crevel, I., Carter, N.J., Alonso, M.C., Hirose, K., Amos, L.A., 2000. The conformational cycle of kinesin. Philos. Trans. R. Soc. Lond. Ser. B 355, 459–464.

    Article  Google Scholar 

  • Downing, K., Nogales, E., 1998. Tubulin and microtubule structure. Curr. Opin. Cell Biol. 10, 16–22.

    Article  Google Scholar 

  • Elston, T.C., Peskin, C.S., 2000. The role of protein flexibility in molecular motor function: Coupling diffusion in a tilted periodic potential. SIAM J. Appl. Math. 60(3), 842–867.

    Article  MATH  MathSciNet  Google Scholar 

  • Elston, T.C., You, D., Peskin, C.S., 2000. Protein flexibility and correlation ratchet. SIAM J. Appl. Math. 61(3), 776–791.

    Article  MATH  MathSciNet  Google Scholar 

  • Fisher, M.E., Kolomeisky, A.B., 2001. Simple mechanochemistry describes the dynamics of kinesin molecules. PNAS 98(14), 7748–7753.

    Article  Google Scholar 

  • Fox, R.F., 1998. Rectified brownian movement in molecular and cell biology. Phys. Rev. E 57(2), 2177–2203.

    Article  Google Scholar 

  • Gilbert, S., Johnson, K., 1995. Pathway of processive atp hydrolysis by kinesin. Nature 373, 671–676.

    Article  Google Scholar 

  • Goldstein, L. S.B., 2001. Molecular motors: From one motor many tails to one motor many tales. Trends Cell Biol. 11(12), 477–482.

    Article  Google Scholar 

  • Hoenger, A., Thormahlen, M., Diaz-Avalos, R., Doerhoefer, M., Goldie, K.N., Muller, J., Mandelkow, E., 2000. A new look at the microtubule binding patterns of dimeric kinesins. J. Mol. Biol. 297, 1087–1103.

    Article  Google Scholar 

  • Howard, J., 2001. Mechanics of Motor Proteins and the Cytoskeleton. Sinauer Associates, Sunderland.

    Google Scholar 

  • Julicher, F., Ajdari, A., Prost, J., 1997. Modeling molecular motors. Rev. Modern Phys.s 69(4), 1269–1281.

    Article  Google Scholar 

  • Kamal, A., Goldstein, L.S., 2002. Principles of cargo attachments to cytoplasmic motor proteins. Curr. Opin. Cell Biol. 14, 63–68.

    Article  Google Scholar 

  • Karsenti, E., Vernos, I., October 2001. The mitotic spindle: A self-made machine. Science 294(5542), 543–547.

    Article  Google Scholar 

  • Kikkawa, M., Sablin, E.P., Okada, Y., Yajima, H., Fletterick, R.J., Hirokawa, N., 2001. Switch-based mechanisms of kinesin motors. Nature 411, 439.

    Article  Google Scholar 

  • Kloeden, P.E., Platen, E., 1992. Numerical Solution of Stochastic Differential Equations. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Knight, A.E., Molloy, J.E., 1999. Coupling atp hydrolysis to mechanical work. Nat. Cell Biol. 1(4), E87–E89.

    Article  Google Scholar 

  • Kozielski, F., Sack, S., Marx, A., Thormahlen, M., Schonbrum, E., Biou, V., Thompson, A., Mandelkow, E.M., Mandelkow, E., 1997. The crystal structure of dimeric kinesin and implications for microtubule-dependent motility. Cell 91, 985.

    Article  Google Scholar 

  • Kull, F.J., Sablin, E.P., Lau, R., Fletterick, R.J., Vale, R.D., 1996. Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature 380, 550–555.

    Article  Google Scholar 

  • Landau, D., Binder, K., 2000. A Guide to Monte-Carlo Simulations in Statistical Physics. Cambridge University Press, Camridge.

    MATH  Google Scholar 

  • Li, J., Pfister, K., Brady, S., Dahlstrom, A., 1999. Axonal transport and distribution of immunologically distinct kinesin heavy chains in rat neurons. J. Neurosci. Res. 58, 226–241.

    Article  Google Scholar 

  • Maes, C., van Wieren, M.H., 2003. A markov model for kinesin. J. Stat. Phys.s 112(112), 329–355.

    MATH  MathSciNet  Google Scholar 

  • Mandelkow, E., Hoenger, A., 1999. Structures of kinesin and kinesin-microtubule interactions. Curr. Opin. Cell Biol. 11, 34–44.

    Article  Google Scholar 

  • Mogilner, A., Fisher, A., Baskin, R., 2001. Structural changes in the neck linker of kinesin explain the load dependence of the motor's mechanical cycle. J. Theor. Biol. 211(2), 143–157.

    Article  Google Scholar 

  • Nishiyama, M., Muto, E., Inoue, Y., Yanagida, T., Higuchi, H., 2001. Substeps within the 8 nm step of the atpase cycle of single kinesin molecules. Nat. Cell Biol. 3.

  • Nogales, E., Whittaker, M., Milligan, R., Downing, K., 1999. High-resolution model of the microtubule. Cell 96, 79–88.

    Article  Google Scholar 

  • Oksendal, B., 2000. Stochastic Differential Equations: An Introduction with Applications. Springer-Verlag, Berlin.

    Google Scholar 

  • Peskin, C.S., Odell, G.M., Oster, G.F., 1993. Cellular motions and thermal fluctuations: The brownian ratchet. Biophys. J. 65, 316–324.

    Article  Google Scholar 

  • Peskin, C., Oster, G., 1995. Coordinated hydrolysis explains the mechanical behavior of kinesin. Biophys. J. 68, 202–211.

    Google Scholar 

  • Ray, S., Meyhöfer, E., Milligan, R., Howard, J., 1993. Kinesin follows the microtubule's protofilament axis. J. Cell Biol. 121, 1083–1093.

    Article  Google Scholar 

  • Reichl, L.E., 1998. A Modern Course in Statistical Physics. Wiley, New York.

    MATH  Google Scholar 

  • Rice, S., Cui, Y., Sindelar, S., Naber, N., Matuska, M., Vale, R., Cooke, R., 2003. Thermodynamic properties of the kinesin neck-region docking to the catalytic core. Biophys. J. 84, 1844–1854.

    Google Scholar 

  • Rice, S., Lin, A.W., Safer, D., Hart, C., Naber, N., Carragher, B., Cain, S., Pechatnikova, E., Wilson-Kubalek, E.W., Whittaker, M., Pate, E., Cooke, R., Taylor, E.W., Milligan, R., Vale, R., 1999. A structural change in the kinesin motor protein that drives motility. Nature 402(6763), 778–784.

    Article  Google Scholar 

  • Ross, S., 1995. Stochastic Processes. Wiley, New York.

    Google Scholar 

  • Sablin, E.P., Fletterick, R.J., 2001. Nucleotide switchets in molecular motors: Structural analysis of kinesins and myosins. Current Opin. Struc. Biol. 11, 716–724.

    Article  Google Scholar 

  • Sack, S., Muller, J., Marx, A., Thormahlen, M., Mandelkow, E.M., Brady, S.T., Mandelkow, E., 1997. X-ray structure of motor and neck domains from rat brain kinesin. Biochemistry 36, 16155.

    Article  Google Scholar 

  • Schliwa, M., Woehlke, G., 2001. Switching on kinesin. Nature 411, 424–425.

    Article  Google Scholar 

  • Sharp, D., Rogers, G., Scholey, J., 2000. Microtubule motors in mitosis. Nature 407, 41–45.

    Article  Google Scholar 

  • Sindelar, C., Budny, M., Rice, S., Naber, N., Fletterick, R., Cooke, R., 2002. Two conformations in the human kinesin power stroke defined by X-ray crystallography and epr spectroscopy. Nat. Struc. Biol. 9(11), 844–848.

    Google Scholar 

  • Song, Y.H., Marx, A., Muller, J., Woehlke, G., Schliwa, M., Krebs, A., Hoenger, A., Mandelkow, E., 2001. Structure of fast kinesin: Implications for atpase mechanisms and interactions with microtubules. EMBO J. 20, 6213.

    Article  Google Scholar 

  • Svoboda, K., Block, S., 1994. Force and velocity measured for single kinesin molecules. Cell 77, 773–784.

    Article  Google Scholar 

  • Svoboda, K., Mitra, P., Block, S., 1994b. Fluctuation analysis of motor protein movement and single enzyme kinetics. Proc. Natl. Acad. Sci. U.S.A. Vol. 91.

  • Svoboda, K., Schmidt, C.F., Schnapp, B.J., Block, S.M., 1993. Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727.

    Article  Google Scholar 

  • Tuma, C., Zill, A., Bot, N.L., Vernos, I., Gelfand, V., December 1998. Heterotrimeric kinesin ii is the microtubule motor protein responsible for pigment dispersion in xenopus melanophores. J. Cell Biol. 143(6), 1547–1558.

    Article  Google Scholar 

  • Vale, R., Fletterick, R., 1997. The design plan of kinesin motors. Annu. Rev. Cell Dev. Biol. 13, 745–777.

    Article  Google Scholar 

  • Visscher, K., Schnitzer, M., Block, S.M., July 1999. Single kinesin molecules studies with a molecular force clamp. Nature 400, 184–189.

    Google Scholar 

  • Woehlke, G., Ruby, A., Hart, C., Ly, B., Hom-Booher, N., Vale, R., 1997. Microtubule interaction site of the kinesin motor. Cell 90(2), 207–216.

    Article  Google Scholar 

  • Yun, M., Bronner, C.E., Park, C.G., Cha, S.S., Park, H.W., Endow, S.A., 2003. Rotation of the stalk/neck and one head in a new crystal structure of the kinesin motor protein. EMBO J. 22, 1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Atzberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atzberger, P.J., Peskin, C.S. A Brownian Dynamics Model of Kinesin in Three Dimensions Incorporating the Force-Extension Profile of the Coiled-Coil Cargo Tether. Bltn. Mathcal. Biology 68, 131–160 (2006). https://doi.org/10.1007/s11538-005-9003-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-005-9003-6

Keywords

Navigation