Skip to main content
Log in

Brownian geometry

  • Special Feature: The Takagi Lectures
  • Published:
Japanese Journal of Mathematics Aims and scope

Abstract

We present different continuous models of random geometry that have been introduced and studied in recent years. In particular, we consider the Brownian sphere (also called the Brownian map), which is the universal scaling limit of large planar maps in the Gromov-Hausdorff sense, and the Brownian disk, which appears as the scaling limit of planar maps with a boundary. We discuss the construction of these models, and we emphasize the role played by Brownian motion indexed by the Brownian tree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Abraham, Rescaled bipartite planar maps converge to the Brownian map, Ann. Inst. Henri Poincaré Probab. Stat., 52 (2016), 575–595.

    Article  MathSciNet  Google Scholar 

  2. C. Abraham and J.-F. Le Gall, Excursion theory for Brownian motion indexed by the Brownian tree, J. Eur. Math. Soc. (JEMS), 20 (2018), 2951–3016.

    Article  MathSciNet  Google Scholar 

  3. L. Addario-Berry and M. Albenque, The scaling limit of random simple triangulations and random simple quadrangulations, Ann. Probab., 45 (2017), 2767–2825.

    Article  MathSciNet  Google Scholar 

  4. D. Aldous, The continuum random tree. I, Ann. Probab., 19 (1991), 1–28.

    Article  MathSciNet  Google Scholar 

  5. D. Aldous, The continuum random tree. III, Ann. Probab., 21 (1993), 248–289.

    Article  MathSciNet  Google Scholar 

  6. J. Ambjørn, B. Durhuus and T. Jonsson, Quantum Geometry. A Statistical Field Theory Approach, Cambridge Monogr. Math. Phys., Cambridge Univ. Press, Cambridge, 1997.

    MATH  Google Scholar 

  7. O. Angel, Growth and percolation on the uniform infinite planar triangulation, Geom. Funct. Anal., 13 (2003), 935–974.

    Article  MathSciNet  Google Scholar 

  8. O. Angel and O. Schramm, Uniform infinite planar triangulations, Comm. Math. Phys., 241 (2003), 191–213.

    Article  MathSciNet  Google Scholar 

  9. E. Baur, G. Miermont and G. Ray, Classification of scaling limits of quadrangulations with a boundary, Ann. Probab., to appear; preprint, arXiv:1608.01129.

  10. J. Bertoin, Self-similar fragmentations, Ann. Inst. H. Poincaré Probab. Statist., 38 (2002), 319–340.

    Article  MathSciNet  Google Scholar 

  11. J. Bertoin, Markovian growth-fragmentation processes, Bernoulli, 23 (2017), 1082–1101.

    Article  MathSciNet  Google Scholar 

  12. J. Bertoin, T. Budd, N. Curien and I. Kortchemski, Martingales in self-similar growth-fragmentations and their connections with random planar maps, Probab. Theory Related Fields, to appear; preprint, arXiv:1605.00581.

  13. J. Bertoin, N. Curien and I. Kortchemski, Random planar maps and growth-fragmentations, Ann. Probab., 46 (2018), 207–260.

    Article  MathSciNet  Google Scholar 

  14. J. Bettinelli, Scaling limit of random planar quadrangulations with a boundary, Ann. Inst. Henri Poincaré Probab. Stat., 51 (2015), 432–477.

    Article  MathSciNet  Google Scholar 

  15. J. Bettinelli, E. Jacob and G. Miermont, The scaling limit of uniform random plane maps, via the Ambjørn–Budd bijection, Electron. J. Probab., 19 (2014), no. 74.

  16. J. Bettinelli and G. Miermont, Compact Brownian surfaces I. Brownian disks, Probab. Theory Related Fields, 167 (2017), 555–614.

    Article  MathSciNet  Google Scholar 

  17. J. Bouttier, P. Di Francesco and E. Guitter, Planar maps as labeled mobiles, Electron. J. Combin., 11 (2004), R69.

    MathSciNet  MATH  Google Scholar 

  18. J. Bouttier and E. Guitter, The three-point function of planar quadrangulations, J. Stat. Mech. Theory Exp., 2008 (2008), P07020.

    Article  MathSciNet  Google Scholar 

  19. T. Budzinski, The hyperbolic Brownian plane, Probab. Theory Related Fields, 171 (2018), 503–541.

    Article  MathSciNet  Google Scholar 

  20. D. Burago, Y. Burago and S. Ivanov, A Course in Metric Geometry, Grad. Stud. Math., 33, Amer. Math. Soc., Providence, RI, 2001.

  21. A. Caraceni and N. Curien, Geometry of the uniform infinite half-planar quadrangulation, Random Structures Algorithms, 52 (2018), 454–494.

    Article  MathSciNet  Google Scholar 

  22. P. Chassaing and B. Durhuus, Local limit of labeled trees and expected volume growth in a random quadrangulation, Ann. Probab., 34 (2006), 879–917.

    Article  MathSciNet  Google Scholar 

  23. P. Chassaing and G. Schaeffer, Random planar lattices and integrated superBrownian excursion, Probab. Theory Related Fields, 128 (2004), 161–212.

    Article  MathSciNet  Google Scholar 

  24. N. Curien and J.-F. Le Gall, The Brownian plane, J. Theoret. Probab., 27 (2014), 1249–1291.

    Article  MathSciNet  Google Scholar 

  25. N. Curien and J.-F. Le Gall, The hull process of the Brownian plane, Probab. Theory Related Fields, 166 (2016), 187–231.

    Article  MathSciNet  Google Scholar 

  26. N. Curien and J.-F. Le Gall, First-passage percolation and local modifications of distances in random triangulations, Ann. Sci. Éc. Norm. Supér. (4), to appear; preprint, arXiv:1511.04264.

  27. N. Curien, L. Ménard and G. Miermont, A view from infinity of the uniform infinite planar quadrangulation, ALEA Lat. Am. J. Probab. Math. Stat., 10 (2013), 45–88.

    MathSciNet  MATH  Google Scholar 

  28. N. Curien and G. Miermont, Uniform infinite planar quadrangulations with a boundary, Random Structures Algorithms, 47 (2015), 30–58.

    Article  MathSciNet  Google Scholar 

  29. T. Duquesne and J.-F. Le Gall, Probabilistic and fractal aspects of Lévy trees, Probab. Theory Related Fields, 131 (2005), 553–603.

    Article  MathSciNet  Google Scholar 

  30. A. Greven, P. Pfaffelhuber and A. Winter, Convergence in distribution of random metric measure spaces (Λ-coalescent measure trees), Probab. Theory Related Fields, 145 (2009), 285–322.

    Article  MathSciNet  Google Scholar 

  31. O. Gurel-Gurevich and A. Nachmias, Recurrence of planar graph limits, Ann. of Math. (2), 177 (2013), 761–781.

    Article  MathSciNet  Google Scholar 

  32. E. Gwynne and J. Miller, Scaling limit of the uniform infinite half-plane quadrangulation in the Gromov-Hausdorff-Prokhorov-uniform topology, Electron. J. Probab., 22 (2017), no. 84.

  33. E. Gwynne and J. Miller, Convergence of the free Boltzmann quadrangulation with simple boundary to the Brownian disk, Ann. Inst. Henri Poincaré Probab. Stat., 55 (2019), 551–589.

    Article  MathSciNet  Google Scholar 

  34. E. Gwynne and J. Miller, Convergence of the self-avoiding walk on random quadrangulations to SLE8/3 on √8/3-Liouville quantum gravity, preprint, arXiv:1608.00956.

  35. E. Gwynne and J. Miller, Convergence of percolation on uniform quadrangulations with boundary to SLE6 on √8/3-Liouville quantum gravity, preprint, arXiv:1701.05175.

  36. E. Gwynne, J. Miller and S. Sheffield, The Tutte embedding of the mated-CRT map converges to Liouville quantum gravity, preprint, arXiv:1705.11161.

  37. K. Itô, Poisson point processes attached to Markov processes, In: Proc. Sixth Berkeley Symp. Math. Stat. Prob., 3, Univ. California Press, Berkeley, CA, 1970, pp. 225–239.

    Google Scholar 

  38. E. Jacob and G. Miermont, The Brownian map contains Brownian disks, in preparation.

  39. M. Krikun, Local structure of random quadrangulations, preprint, arXiv:math/0512304.

  40. J.-F. Le Gall, Spatial Branching Processes, Random Snakes and Partial Differential Equations, Lectures Math. ETH Zürich, Birkhäuser Verlag, Basel, 1999.

    Book  Google Scholar 

  41. J.-F. Le Gall, The topological structure of scaling limits of large planar maps, Invent. Math., 169 (2007), 621–670.

    Article  MathSciNet  Google Scholar 

  42. J.-F. Le Gall, Geodesics in large planar maps and in the Brownian map, Acta Math., 205 (2010), 287–360.

    Article  MathSciNet  Google Scholar 

  43. J.-F. Le Gall, Uniqueness and universality of the Brownian map, Ann. Probab., 41 (2013), 2880–2960.

    Article  MathSciNet  Google Scholar 

  44. J.-F. Le Gall, Subordination of trees and the Brownian map, Probab. Theory Related Fields, 171 (2018), 819–864.

    Article  MathSciNet  Google Scholar 

  45. J.-F. Le Gall, Brownian disks and the Brownian snake, Ann. Inst. Henri Poincaré Probab. Stat., 55 (2019), 237–313.

    Article  MathSciNet  Google Scholar 

  46. J.-F. Le Gall and T. Lehéricy, Separating cycles and isoperimetric inequalities in the uniform infinite planar quadrangulation, Ann. Probab., to appear; preprint, arXiv:1710.02990.

  47. J.-F. Le Gall and G. Miermont, Scaling limits of random planar maps with large faces, Ann. Probab., 39 (2011), 1–69.

    Article  MathSciNet  Google Scholar 

  48. J.-F. Le Gall and G. Miermont, Scaling limits of random trees and planar maps, In: Probability and Statistical Physics in Two and More Dimensions, Clay Math. Proc, 15, Amer. Math. Soc, Providence, RI, 2012, pp. 155–211.

    MathSciNet  MATH  Google Scholar 

  49. J.-F. Le Gall and F. Paulin, Scaling limits of bipartite planar maps are homeomorphic to the 2-sphere, Geom. Funct. Anal., 18 (2008), 893–918.

    Article  MathSciNet  Google Scholar 

  50. J.-F. Le Gall and A. Riera, Growth-fragmentation processes in Brownian motion indexed by the Brownian tree, preprint, arXiv:1811.02825.

  51. J.-F. Marckert and A. Mokkadem, Limit of normalized quadrangulations: The Brownian map, Ann. Probab., 34 (2006), 2144–2202.

    Article  MathSciNet  Google Scholar 

  52. C. Marzouk, Scaling limits of random bipartite planar maps with a prescribed degree sequence, Random Structures Algorithms, 53 (2018), 448–503.

    Article  MathSciNet  Google Scholar 

  53. L. Ménard, The two uniform infinite quadrangulations of the plane have the same law, Ann. Inst. Henri Poincaré Probab. Stat., 46 (2010), 190–208.

    Article  MathSciNet  Google Scholar 

  54. G. Miermont, The Brownian map is the scaling limit of uniform random plane quadrangulations, Acta Math., 210 (2013), 319–401.

    Article  MathSciNet  Google Scholar 

  55. G. Miermont, Aspects of random maps, Lecture notes of the 2014 Saint-Flour Probability Summer School, available at http://perso.ens-lyon.fr/gregory.miermont/coursSaint-Flour.pdf.

  56. G. Miermont, personal communication.

  57. J. Miller and S. Sheffield, An axiomatic characterization of the Brownian map, preprint, arXiv:1506.03806.

  58. J. Miller and S. Sheffield, Liouville quantum gravity and the Brownian map I: The QLE(8/3,0) metric, preprint, arXiv:1507.00719.

  59. J. Miller and S. Sheffield, Liouville quantum gravity and the Brownian map II: Geodesics and continuity of the embedding, preprint, arXiv:1605.03563.

  60. J. Miller and S. Sheffield, Liouville quantum gravity and the Brownian map III: the conformal structure is determined, preprint, arXiv:1608.05391.

  61. D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Grundlehren Math. Wiss., 293, Springer-Verlag, 1991.

  62. O. Schramm, Conformally invariant scaling limits: an overview and a collection of problems, In: Proceedings of the International Congress of Mathematicians. Vol. I, Eur. Math. Soc., Zürich, 2007, pp. 513–543.

    MathSciNet  MATH  Google Scholar 

  63. R. Stephenson, Local convergence of large critical multi-type Galton-Watson trees and applications to random maps, J. Theoret. Probab., 31 (2018), 159–205.

    Article  MathSciNet  Google Scholar 

  64. Y. Watabiki, Construction of non-critical string field theory by transfer matrix formalism in dynamical triangulation, Nuclear Phys. B, 441 (1995), 119–163.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

It is a pleasure to thank the organizers of the Takagi Lectures for giving me the opportunity to discuss the present work at this prestigious meeting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Le Gall.

Additional information

Communicated by: Takashi Kumagai

This article is based on the 21st Takagi Lectures that the author delivered at Research Institute for Mathematical Sciences, Kyoto University on June 23, 2018.

Supported by the ERC Advanced Grant 740943 GeoBrown

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Gall, JF. Brownian geometry. Jpn. J. Math. 14, 135–174 (2019). https://doi.org/10.1007/s11537-019-1821-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11537-019-1821-7

Keywords and phrases

Navigation