Abstract
We present different continuous models of random geometry that have been introduced and studied in recent years. In particular, we consider the Brownian sphere (also called the Brownian map), which is the universal scaling limit of large planar maps in the Gromov-Hausdorff sense, and the Brownian disk, which appears as the scaling limit of planar maps with a boundary. We discuss the construction of these models, and we emphasize the role played by Brownian motion indexed by the Brownian tree.
Similar content being viewed by others
References
C. Abraham, Rescaled bipartite planar maps converge to the Brownian map, Ann. Inst. Henri Poincaré Probab. Stat., 52 (2016), 575–595.
C. Abraham and J.-F. Le Gall, Excursion theory for Brownian motion indexed by the Brownian tree, J. Eur. Math. Soc. (JEMS), 20 (2018), 2951–3016.
L. Addario-Berry and M. Albenque, The scaling limit of random simple triangulations and random simple quadrangulations, Ann. Probab., 45 (2017), 2767–2825.
D. Aldous, The continuum random tree. I, Ann. Probab., 19 (1991), 1–28.
D. Aldous, The continuum random tree. III, Ann. Probab., 21 (1993), 248–289.
J. Ambjørn, B. Durhuus and T. Jonsson, Quantum Geometry. A Statistical Field Theory Approach, Cambridge Monogr. Math. Phys., Cambridge Univ. Press, Cambridge, 1997.
O. Angel, Growth and percolation on the uniform infinite planar triangulation, Geom. Funct. Anal., 13 (2003), 935–974.
O. Angel and O. Schramm, Uniform infinite planar triangulations, Comm. Math. Phys., 241 (2003), 191–213.
E. Baur, G. Miermont and G. Ray, Classification of scaling limits of quadrangulations with a boundary, Ann. Probab., to appear; preprint, arXiv:1608.01129.
J. Bertoin, Self-similar fragmentations, Ann. Inst. H. Poincaré Probab. Statist., 38 (2002), 319–340.
J. Bertoin, Markovian growth-fragmentation processes, Bernoulli, 23 (2017), 1082–1101.
J. Bertoin, T. Budd, N. Curien and I. Kortchemski, Martingales in self-similar growth-fragmentations and their connections with random planar maps, Probab. Theory Related Fields, to appear; preprint, arXiv:1605.00581.
J. Bertoin, N. Curien and I. Kortchemski, Random planar maps and growth-fragmentations, Ann. Probab., 46 (2018), 207–260.
J. Bettinelli, Scaling limit of random planar quadrangulations with a boundary, Ann. Inst. Henri Poincaré Probab. Stat., 51 (2015), 432–477.
J. Bettinelli, E. Jacob and G. Miermont, The scaling limit of uniform random plane maps, via the Ambjørn–Budd bijection, Electron. J. Probab., 19 (2014), no. 74.
J. Bettinelli and G. Miermont, Compact Brownian surfaces I. Brownian disks, Probab. Theory Related Fields, 167 (2017), 555–614.
J. Bouttier, P. Di Francesco and E. Guitter, Planar maps as labeled mobiles, Electron. J. Combin., 11 (2004), R69.
J. Bouttier and E. Guitter, The three-point function of planar quadrangulations, J. Stat. Mech. Theory Exp., 2008 (2008), P07020.
T. Budzinski, The hyperbolic Brownian plane, Probab. Theory Related Fields, 171 (2018), 503–541.
D. Burago, Y. Burago and S. Ivanov, A Course in Metric Geometry, Grad. Stud. Math., 33, Amer. Math. Soc., Providence, RI, 2001.
A. Caraceni and N. Curien, Geometry of the uniform infinite half-planar quadrangulation, Random Structures Algorithms, 52 (2018), 454–494.
P. Chassaing and B. Durhuus, Local limit of labeled trees and expected volume growth in a random quadrangulation, Ann. Probab., 34 (2006), 879–917.
P. Chassaing and G. Schaeffer, Random planar lattices and integrated superBrownian excursion, Probab. Theory Related Fields, 128 (2004), 161–212.
N. Curien and J.-F. Le Gall, The Brownian plane, J. Theoret. Probab., 27 (2014), 1249–1291.
N. Curien and J.-F. Le Gall, The hull process of the Brownian plane, Probab. Theory Related Fields, 166 (2016), 187–231.
N. Curien and J.-F. Le Gall, First-passage percolation and local modifications of distances in random triangulations, Ann. Sci. Éc. Norm. Supér. (4), to appear; preprint, arXiv:1511.04264.
N. Curien, L. Ménard and G. Miermont, A view from infinity of the uniform infinite planar quadrangulation, ALEA Lat. Am. J. Probab. Math. Stat., 10 (2013), 45–88.
N. Curien and G. Miermont, Uniform infinite planar quadrangulations with a boundary, Random Structures Algorithms, 47 (2015), 30–58.
T. Duquesne and J.-F. Le Gall, Probabilistic and fractal aspects of Lévy trees, Probab. Theory Related Fields, 131 (2005), 553–603.
A. Greven, P. Pfaffelhuber and A. Winter, Convergence in distribution of random metric measure spaces (Λ-coalescent measure trees), Probab. Theory Related Fields, 145 (2009), 285–322.
O. Gurel-Gurevich and A. Nachmias, Recurrence of planar graph limits, Ann. of Math. (2), 177 (2013), 761–781.
E. Gwynne and J. Miller, Scaling limit of the uniform infinite half-plane quadrangulation in the Gromov-Hausdorff-Prokhorov-uniform topology, Electron. J. Probab., 22 (2017), no. 84.
E. Gwynne and J. Miller, Convergence of the free Boltzmann quadrangulation with simple boundary to the Brownian disk, Ann. Inst. Henri Poincaré Probab. Stat., 55 (2019), 551–589.
E. Gwynne and J. Miller, Convergence of the self-avoiding walk on random quadrangulations to SLE8/3 on √8/3-Liouville quantum gravity, preprint, arXiv:1608.00956.
E. Gwynne and J. Miller, Convergence of percolation on uniform quadrangulations with boundary to SLE6 on √8/3-Liouville quantum gravity, preprint, arXiv:1701.05175.
E. Gwynne, J. Miller and S. Sheffield, The Tutte embedding of the mated-CRT map converges to Liouville quantum gravity, preprint, arXiv:1705.11161.
K. Itô, Poisson point processes attached to Markov processes, In: Proc. Sixth Berkeley Symp. Math. Stat. Prob., 3, Univ. California Press, Berkeley, CA, 1970, pp. 225–239.
E. Jacob and G. Miermont, The Brownian map contains Brownian disks, in preparation.
M. Krikun, Local structure of random quadrangulations, preprint, arXiv:math/0512304.
J.-F. Le Gall, Spatial Branching Processes, Random Snakes and Partial Differential Equations, Lectures Math. ETH Zürich, Birkhäuser Verlag, Basel, 1999.
J.-F. Le Gall, The topological structure of scaling limits of large planar maps, Invent. Math., 169 (2007), 621–670.
J.-F. Le Gall, Geodesics in large planar maps and in the Brownian map, Acta Math., 205 (2010), 287–360.
J.-F. Le Gall, Uniqueness and universality of the Brownian map, Ann. Probab., 41 (2013), 2880–2960.
J.-F. Le Gall, Subordination of trees and the Brownian map, Probab. Theory Related Fields, 171 (2018), 819–864.
J.-F. Le Gall, Brownian disks and the Brownian snake, Ann. Inst. Henri Poincaré Probab. Stat., 55 (2019), 237–313.
J.-F. Le Gall and T. Lehéricy, Separating cycles and isoperimetric inequalities in the uniform infinite planar quadrangulation, Ann. Probab., to appear; preprint, arXiv:1710.02990.
J.-F. Le Gall and G. Miermont, Scaling limits of random planar maps with large faces, Ann. Probab., 39 (2011), 1–69.
J.-F. Le Gall and G. Miermont, Scaling limits of random trees and planar maps, In: Probability and Statistical Physics in Two and More Dimensions, Clay Math. Proc, 15, Amer. Math. Soc, Providence, RI, 2012, pp. 155–211.
J.-F. Le Gall and F. Paulin, Scaling limits of bipartite planar maps are homeomorphic to the 2-sphere, Geom. Funct. Anal., 18 (2008), 893–918.
J.-F. Le Gall and A. Riera, Growth-fragmentation processes in Brownian motion indexed by the Brownian tree, preprint, arXiv:1811.02825.
J.-F. Marckert and A. Mokkadem, Limit of normalized quadrangulations: The Brownian map, Ann. Probab., 34 (2006), 2144–2202.
C. Marzouk, Scaling limits of random bipartite planar maps with a prescribed degree sequence, Random Structures Algorithms, 53 (2018), 448–503.
L. Ménard, The two uniform infinite quadrangulations of the plane have the same law, Ann. Inst. Henri Poincaré Probab. Stat., 46 (2010), 190–208.
G. Miermont, The Brownian map is the scaling limit of uniform random plane quadrangulations, Acta Math., 210 (2013), 319–401.
G. Miermont, Aspects of random maps, Lecture notes of the 2014 Saint-Flour Probability Summer School, available at http://perso.ens-lyon.fr/gregory.miermont/coursSaint-Flour.pdf.
G. Miermont, personal communication.
J. Miller and S. Sheffield, An axiomatic characterization of the Brownian map, preprint, arXiv:1506.03806.
J. Miller and S. Sheffield, Liouville quantum gravity and the Brownian map I: The QLE(8/3,0) metric, preprint, arXiv:1507.00719.
J. Miller and S. Sheffield, Liouville quantum gravity and the Brownian map II: Geodesics and continuity of the embedding, preprint, arXiv:1605.03563.
J. Miller and S. Sheffield, Liouville quantum gravity and the Brownian map III: the conformal structure is determined, preprint, arXiv:1608.05391.
D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Grundlehren Math. Wiss., 293, Springer-Verlag, 1991.
O. Schramm, Conformally invariant scaling limits: an overview and a collection of problems, In: Proceedings of the International Congress of Mathematicians. Vol. I, Eur. Math. Soc., Zürich, 2007, pp. 513–543.
R. Stephenson, Local convergence of large critical multi-type Galton-Watson trees and applications to random maps, J. Theoret. Probab., 31 (2018), 159–205.
Y. Watabiki, Construction of non-critical string field theory by transfer matrix formalism in dynamical triangulation, Nuclear Phys. B, 441 (1995), 119–163.
Acknowledgements
It is a pleasure to thank the organizers of the Takagi Lectures for giving me the opportunity to discuss the present work at this prestigious meeting.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by: Takashi Kumagai
This article is based on the 21st Takagi Lectures that the author delivered at Research Institute for Mathematical Sciences, Kyoto University on June 23, 2018.
Supported by the ERC Advanced Grant 740943 GeoBrown
About this article
Cite this article
Le Gall, JF. Brownian geometry. Jpn. J. Math. 14, 135–174 (2019). https://doi.org/10.1007/s11537-019-1821-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11537-019-1821-7