Skip to main content
Log in

Spectral asymptotics for Kac–Murdock–Szegő matrices

  • Published:
Japanese Journal of Mathematics Aims and scope

Abstract

Szegő’s First Limit Theorem provides the limiting statistical distribution of the eigenvalues of large Toeplitz matrices. Szegő’s Second (or Strong) Limit Theorem for Toeplitz matrices gives a second order correction to the First Limit Theorem, and allows one to calculate asymptotics for the determinants of large Toeplitz matrices. In this paper we survey results extending the First and Second Limit Theorems to Kac–Murdock–Szegő (KMS) matrices. These are matrices whose entries along the diagonals are not necessarily constants, but modeled by functions. We clarify and extend some existing results, and explain some apparently contradictory results in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agnew A.F., Bourget A.: The semiclassical density of states for the quantum asymmetric top. J. Phys. A, 41, 185205 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agnew A.F., Bourget A.: A trace formula for a family of Jacobi operators. Anal. Appl. (Singap.), 7, 115–130 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Avram F.: On bilinear forms in Gaussian random variables and Toeplitz matrices. Probab. Theory Related Fields, 79, 37–45 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Bhatia, Matrix Analysis, Grad. Texts in Math., 169, Springer-Verlag, 1997.

  5. Borcea J.B., Shapiro B.Z.: Root asymptotics of spectral polynomials for the Lamé operator. Comm. Math. Phys., 282, 323–337 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. A.Böttcher and S.M. Grudsky, Spectral Properties of Banded Toeplitz Matrices, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2005.

  7. Böttcher A., Silbermann B.: Toeplitz matrices and determinants with Fisher–Hartwig symbols. J. Funct. Anal., 63, 178–214 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bourget A.: New identities for the spectrum of the quantum Euler top. J. Phys. A, 43, 265201 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bourget A.: Spectral density of Jacobi matrices with small deviations. Constr. Approx., 36, 375–398 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bourget A., McMillen T.: Spectral inequalities for the quantum asymmetric top. J. Phys. A, 42, 095209 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Bourget and T. McMillen, Asymptotics of determinants of discrete Schrödinger operators, to appear in J. Spect. Theor., arXiv:1609.04125.

  12. Bourget A., McMillen T.: A first Szegő’s limit theorem for a class of non-Toeplitz matrices. Constr. Approx., 45, 47–63 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Brown A., Halmos P.R.: Algebraic properties of Toeplitz operators. J. Reine Angew. Math., 213, 89–102 (1964)

    MathSciNet  MATH  Google Scholar 

  14. Bump D., Diaconis P., Hicks A., Miclo L., Widom H.: An exercise(?) in Fourier analysis on the Heisenberg group. Ann. Fac. Sci. Toulouse Math. (6), 26, 263–288 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Bump, P. Diaconis, A. Hicks, L. Miclo and H. Widom, Useful bounds on the extreme eigenvalues and vectors of matrices for Harper’s operators, In: Large Truncated Toeplitz Matrices, Toeplitz Operators, and Related Topics, Oper. Theory Adv. Appl., 259, Birkhäuser, 2017, pp. 235–265.

  16. Deift P., Its A., Krasovsky I.: Asymptotics of Toeplitz, Hankel, and Toeplitz+Hankel determinants with Fisher–Hartwig singularities. Ann. of Math. (2), 174, 1243–1299 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Deift and K.D.T.R. McLaughlin, A Continuum Limit of the Toda Lattice, Mem. Amer. Math. Soc., 131, no. 624, Amer. Math. Soc., Providence, RI, 1998.

  18. Donatelli M., Mazza M., Serra-Capizzano S.: Spectral analysis and structure preserving preconditioners for fractional diffusion equations. J. Comput. Phys., 307, 262–279 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ehrhardt T., Shao B.: Asymptotic behavior of variable-coefficient Toeplitz determinants. J. Fourier Anal. Appl., 7, 71–92 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Garoni C., Serra-Capizzano S.: The theory of locally Toeplitz sequences: a review, an extension, and a few representative applications. Bol. Soc. Mat. Mex., 22, 529–565 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. U. Grenander and G. Szegő, Toeplitz Forms and Their Applications, California Monographs in Mathematical Sciences, Univ. of California Press, Berkeley–Los Angeles, 1958.

  22. Hirschman I.I. Jr.: The spectra of certain Toeplitz matrices. Illinois J. Math., 11, 145–159 (1967)

    MathSciNet  MATH  Google Scholar 

  23. Kac M.: Asymptotic behaviour of a class of determinants. Enseignement Math. (2), 15, 177–183 (1969)

    MathSciNet  MATH  Google Scholar 

  24. Kac M.: On certain Toeplitz-like matrices and their relation to the problem of lattice vibrations. J. Stat. Phys., 151, 785–795 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kac M., Murdock W.L., Szegő G.: On the eigenvalues of certain Hermitian forms. J. Rational Mech. Anal., 2, 767–800 (1953)

    MathSciNet  MATH  Google Scholar 

  26. Kuijlaars A.B.J., Serra-Capizzano S.: Asymptotic zero distribution of orthogonal polynomials with discontinuously varying recurrence coefficients. J. Approx. Theory, 113, 142–155 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kuijlaars A.B.J., Van Assche W.: The asymptotic zero distribution of orthogonal polynomials with varying recurrence coefficients. J. Approx. Theory, 99, 167–197 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. McMillen T.: On the eigenvalues of double band matrices. Linear Algebra Appl., 431, 1890–1897 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. McMillen T., Bourget A., Agnew A.: On the zeros of complex Van Vleck polynomials. J. Comput. Appl. Math., 223, 862–871 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mejlbo L.C., Schmidt P.F.: On the determinants of certain Toeplitz matrices. Bull. Amer. Math. Soc., 67, 159–162 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mejlbo L.C., Schmidt P.F.: On the eigenvalues of generalized Toeplitz matrices. Math. Scand., 10, 5–16 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  32. Noschese S., Reichel L.: The structured distance to normality of banded Toeplitz matrices. BIT, 49, 629–640 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Noschese S., Reichel L.: The structured distance to normality of Toeplitz matrices with application to preconditioning. Numer. Linear Algebra Appl., 18, 429–447 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Parter S.V.: On the distribution of the singular values of Toeplitz matrices. Linear Algebra Appl., 80, 115–130 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  35. Schmidt P., Spitzer F.: The Toeplitz matrices of an arbitrary Laurent polynomial. Math. Scand., 8, 15–38 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  36. Serra-Capizzano S.: A note on the asymptotic spectra of finite difference discretizations of second order elliptic partial differential equations. Asian J. Math., 4, 499–514 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. S. Serra-Capizzano, Generalized locally Toeplitz sequences: spectral analysis and applications to discretized partial differential equations. Special issue on structured matrices: analysis, algorithms and applications (Cortona, 2000), Linear Algebra Appl., 366 (2003), 371–402.

  38. Serra-Capizzano S.: The GLT class as a generalized Fourier analysis and applications.. Linear Algebra Appl., 419, 180–233 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Shao B.: A trace formula for variable-coefficient Toeplitz matrices with symbols of bounded variation. J. Math. Anal. Appl., 222, 505–546 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  40. Shao B.: A trace formula for a class of variable-coefficient block Toeplitz matrices. Integral Equations Operator Theory, 45, 359–374 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  41. Shao B.: On the singular values of generalized Toeplitz matrices. Integral Equations Operator Theory, 49, 239–254 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Shapiro B., Takemura K., Tater M.: On spectral polynomials of the Heun equation. II. Comm. Math. Phys., 311, 277–300 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Tilli P.: Locally Toeplitz sequences: spectral properties and applications. Linear Algebra Appl., 278, 91–120 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  44. P. Tilli, Asymptotic spectral distribution of Toeplitz-related matrices, In: Fast Reliable Algorithms for Matrices with Structure, SIAM, Philadelphia, PA, 1999, pp. 153–187.

  45. Tilli P.: Some results on complex Toeplitz eigenvalues. J. Math. Anal. Appl., 239, 390–401 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  46. Trefethen L.N., Chapman S.J.: Wave packet pseudomodes of twisted Toeplitz matrices. Comm. Pure Appl. Math., 57, 1233–1264 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. L.N. Trefethen and M. Embree, Spectra and Pseudospectra. The Behaviors of Nonnormal Matrices and Operators, Princeton Univ. Press, Princeton, NJ, 2005.

  48. Trench W.F.: Spectral distribution of generalized Kac–Murdock–Szegő matrices. Linear Algebra Appl., 347, 251–273 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  49. Trotter H.F.: Eigenvalue distributions of large Hermitian matrices; Wigner’s semicircle law and a theorem of Kac, Murdock, and Szegő. Adv. in Math., 54, 67–82 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  50. Tyrtyshnikov E.E.: A unifying approach to some old and new theorems on distribution and clustering. Linear Algebra Appl., 232, 1–43 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  51. Ullman J.L.: A problem of Schmidt and Spitzer. Bull. Amer. Math. Soc., 73, 883–885 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  52. Widom H.: Asymptotic behavior of block Toeplitz matrices and determinants. Advances in Math., 13, 284–322 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  53. Widom H.: Asymptotic behavior of block Toeplitz matrices and determinants. II. Advances in Math., 21, 1–29 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  54. H. Widom, Eigenvalue distribution of nonselfadjoint Toeplitz matrices and the asymptotics of Toeplitz determinants in the case of nonvanishing index, In: Topics in Operator Theory: Ernst D. Hellinger Memorial Volume, Oper. Theory Adv. Appl., 48, Birkhäuser, 1990, pp. 387–421.

  55. H. Widom, Eigenvalue distribution for nonselfadjoint Toeplitz matrices, In: Toeplitz Operators and Related Topics, Santa Cruz, CA, 1992, Oper. Theory Adv. Appl., 71, Birkhäuser, 1994, pp. 1–8.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Bourget.

Additional information

Communicated by: Toshiyuki Kobayashi

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourget, A., Loya, A.A. & McMillen, T. Spectral asymptotics for Kac–Murdock–Szegő matrices. Jpn. J. Math. 13, 67–107 (2018). https://doi.org/10.1007/s11537-018-1640-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11537-018-1640-2

Keywords and phrases

Mathematics Subject Classification (2010)

Navigation