Skip to main content
Log in

From Riemann and Kodaira to Modern Developments on Complex Manifolds

  • Takagi Lectures
  • Published:
Japanese Journal of Mathematics Aims and scope

Abstract

We survey the theory of complex manifolds that are related to Riemann surface, Hodge theory, Chern class, Kodaira embedding and Hirzebruch–Riemann–Roch, and some modern development of uniformization theorems, Kähler–Einstein metric and the theory of Donaldson–Uhlenbeck–Yau on Hermitian Yang–Mills connections. We emphasize mathematical ideas related to physics. At the end, we identify possible future research directions and raise some important open questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alessandrini, L., Bassanelli, G.: Metric properties of manifolds bimeromorphic to compact Kähler spaces. J. Differential Geom. 37, 95–121 (1993)

    MathSciNet  MATH  Google Scholar 

  2. Alim, M., Scheidegger, E., Yau, S.-T., Zhou, J.: Special polynomial rings, quasi modular forms and duality of topological strings. Adv. Theor. Math. Phys. 18, 401–467 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anderson, M.T., Kronheimer, P.B., LeBrun, C.: Complete Ricci-flat Kähler manifolds of infinite topological type. Comm. Math. Phys. 125, 637–642 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Angehrn, U., Siu, Y.-T.: Effective freeness and point separation for adjoint bundles. Invent. Math. 122, 291–308 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Bando and Y.-T. Siu, Stable sheaves and Einstein–Hermitian metrics, In: Geometry and Analysis on Complex Manifolds, World Sci. Publ., River Edge, NJ, 1994, pp. 39–50.

  6. Bogomolov, F.A.: Classification of surfaces of class VII\(_0\) with \(b_2=0\). Izv. Akad. Nauk SSSR Ser. Mat. 40, 273–288 (1976)

    MathSciNet  Google Scholar 

  7. Bogomolov, F.A.: Families of curves on a surface of general type. Soviet Math. Dokl. 236, 1294–1297 (1977)

    MathSciNet  MATH  Google Scholar 

  8. Bogomolov, F.A.: Holomorphic tensors and vector bundles on projective manifolds. Izv. Akad. Nauk SSSR Ser. Mat. 42, 1227–1287 (1978)

    MathSciNet  Google Scholar 

  9. Bogomolov, F.A.: Surfaces of class VII\(_0\) and affine geometry. Izv. Akad. Nauk SSSR Ser. Mat. 46, 710–761 (1982)

    MathSciNet  Google Scholar 

  10. Bourguignon, J.-P., Li, P., Yau, S.-T.: Upper bound for the first eigenvalue of algebraic submanifolds. Comment. Math. Helv. 69, 199–207 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. E. Calabi, The space of Kähler metrics, In: Proc. Internat. Congr. Math., 2, Amsterdam, 1954, pp. 206–207.

  12. P. Candelas, D.-E. Diaconescu, B. Florea, D.R. Morrison and G. Rajesh, Codimension-three bundle singularities in F-theory, J. High Energy Phys., 2002, 06-014.

  13. Candelas, P., Horowitz, G.T., Strominger, A., Witten, E.: Vacuum configurations for superstrings. Nuclear Phys. B 258, 46–74 (1985)

    Article  MathSciNet  Google Scholar 

  14. D. Catlin, The Bergman kernel and a theorem of Tian, In: Analysis and Geometry in Several Complex Variables, Katata, 1997, Trends Math., Birkhäuser Boston, Boston, MA, 1999, pp. 1–23.

  15. Chen, X., Donaldson, S., Sun, S.: Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities. J. Amer. Math. Soc. 28, 183–197 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, X., Donaldson, S., Sun, S.: Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than \(2\pi \). J. Amer. Math. Soc. 28, 199–234 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, X., Donaldson, S., Sun, S.: Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches \(2\pi \) and completion of the main proof. J. Amer. Math. Soc. 28, 235–278 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. S.-S. Chern, Characteristic classes of Hermitian manifolds, Ann. of Math. (2), 47 (1946), 85–121.

  19. Chi, C.-Y., Yau, S.-T.: A geometric approach to problems in birational geometry. Proc. Natl. Acad. Sci. USA 105, 18696–18701 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. T.C. Collins, A. Jacob and S.-T. Yau, (1,1) forms with specified Lagrangian phase: A priori estimates and algebraic obstructions, preprint, arXiv:1508.01934.

  21. T.C. Collins and G. Székelyhidi, K-semistability for irregular Sasakian manifolds, preprint, arXiv:1204.2230, to appear in J. Differential Geom.

  22. Demailly, J.-P.: A numerical criterion for very ample line bundles. J. Differential Geom. 37, 323–374 (1993)

    MathSciNet  MATH  Google Scholar 

  23. S.K. Donaldson, Anti self-dual Yang–Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. (3), 50 (1985), 1–26.

  24. Donaldson, S.K.: Scalar curvature and stability of toric varieties. J. Differential Geom. 62, 289–349 (2002)

    MathSciNet  MATH  Google Scholar 

  25. M.R. Douglas, R. Reinbacher and S.-T. Yau, Branes, bundles and attractors: Bogomolov and beyond, preprint, arXiv:math/0604597.

  26. M. Esole, J. Fullwood and S.-T. Yau, D5 elliptic fibrations: non-Kodaira fibers and new orientifold limits of F-theory, preprint, arXiv:1110.6177.

  27. M. Esole, M.J. Kang and S.-T. Yau, A new model for elliptic fibrations with a rank one Mordell–Weil group: I. Singular fibers and semi-stable degenerations, preprint, arXiv:1410.0003.

  28. M. Esole and S.-T. Yau, Small resolutions of \(SU(5)\)-models in F-theory, preprint, arXiv:1107.0733.

  29. Fu, J.-X., Yau, S.-T.: The theory of superstring with flux on non-Kähler manifolds and the complex Monge-Ampère equation. J. Differential Geom. 78, 369–428 (2008)

    MathSciNet  MATH  Google Scholar 

  30. K. Fukaya, Morse homotopy, \(A^\infty \)-category, and Floer homologies, In: Proceedings of GARC Workshop on Geometry and Topology '93, Lecture Notes Series, 18, Seoul Nat. Univ., 1993.

  31. K. Fukaya, Y.-G. Oh, H. Ohta and K. Ono, Lagrangian Intersection Floer Theory: Anomaly and Obstruction. Part I, AMS/IP Stud. Adv. Math., 46.1, Amer. Math. Soc., Providence, RI, 2010.

  32. Futaki, A.: An obstruction to the existence of Einstein Kähler metrics. Invent. Math. 73, 437–443 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  33. Gauntlett, J.P., Martelli, D., Sparks, J., Yau, S.-T.: Obstructions to the existence of Sasaki-Einstein metrics. Comm. Math. Phys. 273, 803–827 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. A.B. Givental, Equivariant Gromov–Witten invariants, Internat. Math. Res. Notices, 1996, no. 13, 613–663.

  35. Goldstein, E., Prokushkin, S.: Geometric model for complex non-Kähler manifolds with SU(3) structure. Comm. Math. Phys. 251, 65–78 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hirzebruch, F.: Arithmetic genera and the theorem of Riemann-Roch for algebraic varieties. Proc. Nat. Acad. Sci. U.S.A. 40, 110–114 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  37. F. Hirzebruch and K. Kodaira, On the complex projective spaces, J. Math. Pures Appl. (9), 36 (1957), 201–216.

  38. H. Hopf, Zur Topologie der komplexen Mannigfaltigkeiten, In: Studies and Essays Presented to R. Courant on his 60th Birthday, Interscience Publishers, New York, 1948, pp. 167–185.

  39. S.B. Johnson and W. Taylor, Calabi–Yau threefolds with large \(h^{2,1}\), J. High Energy Phys., 2014, 10-023.

  40. Kähler, E.: Über eine bemerkenswerte Hermitesche Metrik. Abh. Math. Sem. Univ. Hamburg 9, 173–186 (1933)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kawamata, Y.: On the finiteness of generators of a pluricanonical ring for a 3-fold of general type. Amer. J. Math. 106, 1503–1512 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kawamata, Y.: Pluricanonical systems on minimal algebraic varieties. Invent. Math. 79, 567–588 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  43. F. Klein, Riemannsche Flächen, Vorlesungen, gehalten in Göttingen 1891/92, Reprinted by Springer, 1986.

  44. Kollár, J., Matsusaka, T.: Riemann-Roch type inequalities. Amer. J. Math. 105, 229–252 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  45. Kollár, J., Miyaoka, Y., Mori, S.: Rational connectedness and boundedness of Fano manifolds. J. Differential Geom. 36, 765–779 (1992)

    MathSciNet  MATH  Google Scholar 

  46. M. Kontsevich, Homological algebra of mirror symmetry, In: Proceedings of the International Congress of Mathematicians. Vol. 1, 2, Zürich, 1994, Birkhäuser, Basel, 1995, pp. 120–139.

  47. Kool, M., Shende, V., Thomas, R.P.: A short proof of the Göttsche conjecture. Geom. Topol. 15, 397–406 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. S.-C. Lau and J. Zhou, Modularity of open Gromov–Witten potentials of elliptic orbifolds, preprint, arXiv:1412.1499.

  49. Leung, N.C.: Einstein type metrics and stability on vector bundles. J. Differential Geom. 45, 514–546 (1997)

    MathSciNet  MATH  Google Scholar 

  50. Li, J., Yau, S.-T.: The existence of supersymmetric string theory with torsion. J. Differential Geom. 70, 143–181 (2005)

    MathSciNet  MATH  Google Scholar 

  51. Li, J., Yau, S.-T., Zheng, F.: A simple proof of Bogomolov's theorem on class \({\rm VII}_0\) surfaces with \(b_2=0\). Illinois J. Math. 34, 217–220 (1990)

    MathSciNet  MATH  Google Scholar 

  52. Lian, B.H., Liu, K., Yau, S.-T.: Mirror principle. I. Asian J. Math. 1, 729–763 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  53. Lian, B.H., Yau, S.-T.: Period integrals of CY and general type complete intersections. Invent. Math. 191, 35–89 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  54. Lichnerowicz, A.: Géométrie des groupes de transformations. Travaux et Recherches Mathématiques. III, Dunod, Paris (1958)

    MATH  Google Scholar 

  55. Liu, K., Sun, X., Yau, S.-T.: Canonical metrics on the moduli space of Riemann surfaces. I. J. Differential Geom. 68, 571–637 (2004)

    MathSciNet  MATH  Google Scholar 

  56. Liu, K., Sun, X., Yau, S.-T.: Canonical metrics on the moduli space of Riemann surfaces. II. J. Differential Geom. 69, 163–216 (2005)

    MathSciNet  MATH  Google Scholar 

  57. Lu, Z.: On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch. Amer. J. Math. 122, 235–273 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  58. Lu, S.S.-Y., Yau, S.-T.: Holomorphic curves in surfaces of general type. Proc. Nat. Acad. Sci. U.S.A. 87, 80–82 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  59. Luo, H.: Geometric criterion for Gieseker-Mumford stability of polarized manifolds. J. Differential Geom. 49, 577–599 (1998)

    MathSciNet  MATH  Google Scholar 

  60. M. Mariño, R. Minasian, G. Moore and A. Strominger, Nonlinear instantons from supersymmetric \(p\)-branes, J. High Energy Phys., 2000, 01-005.

  61. Martelli, D., Sparks, J., Yau, S.-T.: Sasaki-Einstein manifolds and volume minimisation. Comm. Math. Phys. 280, 611–673 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  62. Maruyama, M.: Boundedness of semistable sheaves of small ranks. Nagoya Math. J. 78, 65–94 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  63. Matsusaka, T.: On canonically polarized varieties. II. Amer. J. Math. 92, 283–292 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  64. Matsusaka, T.: Polarized varieties with a given Hilbert polynomial. Amer. J. Math. 94, 1027–1077 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  65. Matsushima, Y.: Sur la structure du groupe d'homéomorphismes analytiques d'une certaine variété kählérienne. Nagoya Math. J. 11, 145–150 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  66. Mehta, V.B., Ramanathan, A.: Restriction of stable sheaves and representations of the fundamental group. Invent. Math. 77, 163–172 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  67. Michelsohn, M.L.: On the existence of special metrics in complex geometry. Acta Math. 149, 261–295 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  68. Miyaoka, Y.: On the Chern numbers of surfaces of general type. Invent. Math. 42, 225–237 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  69. Y. Miyaoka, Algebraic surfaces with positive indices, In: Classification of Algebraic and Analytic Manifolds, Katata, 1982, Progr. Math., 39, Birkhäuser Boston, Boston, MA, 1983, pp. 281–301.

  70. Mochizuki, T.: Kobayashi-Hitchin Correspondence for Tame Harmonic Bundles and an Application, Astérisque, 309. Soc. Math. France, Paris (2006)

    MATH  Google Scholar 

  71. S. Mori, Projective manifolds with ample tangent bundles, Ann. of Math. (2), 110 (1979), 593–606.

  72. D.R. Morrison and W. Taylor, Matter and singularities, preprint, arXiv:1106.3563.

  73. Mukai, S.: Duality between \( D (X) \) and \( D (\hat{X}) \) with its application to Picard sheaves. Nagoya Math. J. 81, 153–175 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  74. H.L. Royden, Automorphisms and isometries of Teichmüller space, In: 1971 Advances in the Theory of Riemann Surfaces, Proc. Conf., Stony Brook, NY, 1969, Ann. of Math. Stud., 66, Princeton Univ. Press, Princeton, NJ, pp. 369–383.

  75. Schoen, R., Yau, S.-T.: On the structure of manifolds with positive scalar curvature. Manuscripta Math. 28, 159–183 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  76. Y. Shen and J. Zhou, Ramanujan identities and quasi-modularity in Gromov–Witten theory, preprint, arXiv:1411.2078.

  77. C.L. Siegel, Topics in Complex Function Theory, Interscience Tracts in Pure and Applied Mathematics, 25, Vol. I, 1969; Vol. II, 1971; Vol. III, 1973.

  78. Simpson, C.T.: Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization. J. Amer. Math. Soc. 1, 867–918 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  79. Y.T. Siu and S.-T. Yau, Complete Kähler manifolds with nonpositive curvature of faster than quadratic decay, Ann. of Math. (2), 105 (1977), 225–264.

  80. Strominger, A., Yau, S.-T., Zaslow, E.: Mirror symmetry is \(T\)-duality. Nuclear Phys. B 479, 243–259 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  81. Tian, G., Yau, S.-T.: Complete Kähler manifolds with zero Ricci curvature. I. J. Amer. Math. Soc. 3, 579–609 (1990)

    MathSciNet  MATH  Google Scholar 

  82. Tian, G., Yau, S.-T.: Complete Kähler manifolds with zero Ricci curvature. II. Invent. Math. 106, 27–60 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  83. V. Tosatti and X. Yang, An extension of a theorem of Wu–Yau, preprint, arXiv:1506.01145.

  84. Tsai, C.-J., Tseng, L.-S., Yau, S.-T.: Symplectic cohomologies on phase space. J. Math. Phys. 53, 095217 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  85. Tseng, L.-S., Yau, S.-T.: Cohomology and Hodge theory on symplectic manifolds: I. J. Differential Geom. 91, 383–416 (2012)

    MathSciNet  MATH  Google Scholar 

  86. Tseng, L.-S., Yau, S.-T.: Cohomology and Hodge theory on symplectic manifolds: II. J. Differential Geom. 91, 417–443 (2012)

    MathSciNet  MATH  Google Scholar 

  87. Tzeng, Y.-J.: A proof of the Göttsche-Yau-Zaslow formula. J. Differential Geom. 90, 439–472 (2012)

    MathSciNet  MATH  Google Scholar 

  88. Uhlenbeck, K., Yau, S.-T.: On the existence of Hermitian-Yang-Mills connections in stable vector bundles. Comm. Pure Appl. Math. 39, S257–S293 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  89. Weyl, H.: Die Idee der Riemannschen Fläche. Teubner, Leipzig (1913)

    MATH  Google Scholar 

  90. Witten, E., Yau, S.-T.: Connectedness of the boundary in the AdS/CFT correspondence. Adv. Theor. Math. Phys. 3, 1635–1655 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  91. D. Wu and S.-T. Yau, Negative holomorphic curvature and positive canonical bundle, preprint, arXiv:1505.05802.

  92. S. Yamaguchi and S.-T. Yau, Topological string partition functions as polynomials, J. High Energy Phys., 2004, 07-047.

  93. Yang, C.N.: Conditions of self-duality for \(SU(2)\) gauge fields on Euclidean four-dimensional space. Phys. Rev. Lett. 38, 1377–1379 (1977)

    Article  MathSciNet  Google Scholar 

  94. Yau, S.-T.: Intrinsic measures of compact complex manifolds. Math. Ann. 212, 317–329 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  95. Yau, S.-T.: Calabi's conjecture and some new results in algebraic geometry. Proc. Nat. Acad. Sci. U.S.A. 74, 1798–1799 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  96. Yau, S.-T.: Métriques de Kähler-Einstein sur les variétés ouvertes. Astérisque 58, 163–167 (1978)

    Google Scholar 

  97. Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I. Comm. Pure Appl. Math. 31, 339–411 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  98. S.-T. Yau, The role of partial differential equations in differential geometry, In: Proceedings of the International Congress of Mathematicians, Helsinki, 1978, Acad. Sci. Fennica, Helsinki, 1980, pp. 237–250.

  99. S.-T. Yau, Nonlinear Analysis in Geometry, Monog. Enseign. Math., 33, Série des Conférences de l'Union Mathématique Internationale, 8, L'Enseignement Mathématique, Geneva, 1986.

  100. S.-T. Yau, A review of complex differential geometry, In: Several Complex Variables and Complex Geometry. Part 2, Santa Cruz, CA, 1989, Proc. Sympos. Pure Math., 52, Part 2, Amer. Math. Soc., Providence, RI, 1991, pp. 619–625.

  101. S.-T. Yau, Open problems in geometry, In: Differential Geometry: Partial Differential Equations on Manifolds, Los Angeles, CA, 1990, Proc. Sympos. Pure Math., 54, Part 1, Amer. Math. Soc., Providence, RI, 1993, pp. 1–28.

  102. Yau, S.-T.: A splitting theorem and an algebraic geometric characterization of locally Hermitian symmetric spaces. Comm. Anal. Geom. 1, 473–486 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  103. Yau, S.-T., Zaslow, E.: BPS states, string duality, and nodal curves on K3. Nuclear Phys. B 471, 503–512 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  104. Yau, S.-T., Zhang, Y.: The geometry on smooth toroidal compactifications of Siegel varieties. Amer. J. Math. 136, 859–941 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  105. S. Zelditch, Szegő kernel and a theorem of Tian, Internat. Math. Res. Notices, 1998, 317–331.

  106. Zhang, S.: Heights and reductions of semi-stable varieties. Compositio Math. 104, 77–105 (1996)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shing-Tung Yau.

Additional information

Communicated by: Hiraku Nakajima

This article is based on the 16th Takagi Lectures that the author delivered at the University of Tokyo on November 28 and 29, 2015.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yau, ST. From Riemann and Kodaira to Modern Developments on Complex Manifolds. Jpn. J. Math. 11, 265–303 (2016). https://doi.org/10.1007/s11537-016-1565-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11537-016-1565-6

Keywords and phrases

Mathematics Subject Classification (2010)

Navigation