Abstract
We survey the theory of complex manifolds that are related to Riemann surface, Hodge theory, Chern class, Kodaira embedding and Hirzebruch–Riemann–Roch, and some modern development of uniformization theorems, Kähler–Einstein metric and the theory of Donaldson–Uhlenbeck–Yau on Hermitian Yang–Mills connections. We emphasize mathematical ideas related to physics. At the end, we identify possible future research directions and raise some important open questions.
Similar content being viewed by others
References
Alessandrini, L., Bassanelli, G.: Metric properties of manifolds bimeromorphic to compact Kähler spaces. J. Differential Geom. 37, 95–121 (1993)
Alim, M., Scheidegger, E., Yau, S.-T., Zhou, J.: Special polynomial rings, quasi modular forms and duality of topological strings. Adv. Theor. Math. Phys. 18, 401–467 (2014)
Anderson, M.T., Kronheimer, P.B., LeBrun, C.: Complete Ricci-flat Kähler manifolds of infinite topological type. Comm. Math. Phys. 125, 637–642 (1989)
Angehrn, U., Siu, Y.-T.: Effective freeness and point separation for adjoint bundles. Invent. Math. 122, 291–308 (1995)
S. Bando and Y.-T. Siu, Stable sheaves and Einstein–Hermitian metrics, In: Geometry and Analysis on Complex Manifolds, World Sci. Publ., River Edge, NJ, 1994, pp. 39–50.
Bogomolov, F.A.: Classification of surfaces of class VII\(_0\) with \(b_2=0\). Izv. Akad. Nauk SSSR Ser. Mat. 40, 273–288 (1976)
Bogomolov, F.A.: Families of curves on a surface of general type. Soviet Math. Dokl. 236, 1294–1297 (1977)
Bogomolov, F.A.: Holomorphic tensors and vector bundles on projective manifolds. Izv. Akad. Nauk SSSR Ser. Mat. 42, 1227–1287 (1978)
Bogomolov, F.A.: Surfaces of class VII\(_0\) and affine geometry. Izv. Akad. Nauk SSSR Ser. Mat. 46, 710–761 (1982)
Bourguignon, J.-P., Li, P., Yau, S.-T.: Upper bound for the first eigenvalue of algebraic submanifolds. Comment. Math. Helv. 69, 199–207 (1994)
E. Calabi, The space of Kähler metrics, In: Proc. Internat. Congr. Math., 2, Amsterdam, 1954, pp. 206–207.
P. Candelas, D.-E. Diaconescu, B. Florea, D.R. Morrison and G. Rajesh, Codimension-three bundle singularities in F-theory, J. High Energy Phys., 2002, 06-014.
Candelas, P., Horowitz, G.T., Strominger, A., Witten, E.: Vacuum configurations for superstrings. Nuclear Phys. B 258, 46–74 (1985)
D. Catlin, The Bergman kernel and a theorem of Tian, In: Analysis and Geometry in Several Complex Variables, Katata, 1997, Trends Math., Birkhäuser Boston, Boston, MA, 1999, pp. 1–23.
Chen, X., Donaldson, S., Sun, S.: Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities. J. Amer. Math. Soc. 28, 183–197 (2015)
Chen, X., Donaldson, S., Sun, S.: Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than \(2\pi \). J. Amer. Math. Soc. 28, 199–234 (2015)
Chen, X., Donaldson, S., Sun, S.: Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches \(2\pi \) and completion of the main proof. J. Amer. Math. Soc. 28, 235–278 (2015)
S.-S. Chern, Characteristic classes of Hermitian manifolds, Ann. of Math. (2), 47 (1946), 85–121.
Chi, C.-Y., Yau, S.-T.: A geometric approach to problems in birational geometry. Proc. Natl. Acad. Sci. USA 105, 18696–18701 (2008)
T.C. Collins, A. Jacob and S.-T. Yau, (1,1) forms with specified Lagrangian phase: A priori estimates and algebraic obstructions, preprint, arXiv:1508.01934.
T.C. Collins and G. Székelyhidi, K-semistability for irregular Sasakian manifolds, preprint, arXiv:1204.2230, to appear in J. Differential Geom.
Demailly, J.-P.: A numerical criterion for very ample line bundles. J. Differential Geom. 37, 323–374 (1993)
S.K. Donaldson, Anti self-dual Yang–Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. (3), 50 (1985), 1–26.
Donaldson, S.K.: Scalar curvature and stability of toric varieties. J. Differential Geom. 62, 289–349 (2002)
M.R. Douglas, R. Reinbacher and S.-T. Yau, Branes, bundles and attractors: Bogomolov and beyond, preprint, arXiv:math/0604597.
M. Esole, J. Fullwood and S.-T. Yau, D5 elliptic fibrations: non-Kodaira fibers and new orientifold limits of F-theory, preprint, arXiv:1110.6177.
M. Esole, M.J. Kang and S.-T. Yau, A new model for elliptic fibrations with a rank one Mordell–Weil group: I. Singular fibers and semi-stable degenerations, preprint, arXiv:1410.0003.
M. Esole and S.-T. Yau, Small resolutions of \(SU(5)\)-models in F-theory, preprint, arXiv:1107.0733.
Fu, J.-X., Yau, S.-T.: The theory of superstring with flux on non-Kähler manifolds and the complex Monge-Ampère equation. J. Differential Geom. 78, 369–428 (2008)
K. Fukaya, Morse homotopy, \(A^\infty \)-category, and Floer homologies, In: Proceedings of GARC Workshop on Geometry and Topology '93, Lecture Notes Series, 18, Seoul Nat. Univ., 1993.
K. Fukaya, Y.-G. Oh, H. Ohta and K. Ono, Lagrangian Intersection Floer Theory: Anomaly and Obstruction. Part I, AMS/IP Stud. Adv. Math., 46.1, Amer. Math. Soc., Providence, RI, 2010.
Futaki, A.: An obstruction to the existence of Einstein Kähler metrics. Invent. Math. 73, 437–443 (1983)
Gauntlett, J.P., Martelli, D., Sparks, J., Yau, S.-T.: Obstructions to the existence of Sasaki-Einstein metrics. Comm. Math. Phys. 273, 803–827 (2007)
A.B. Givental, Equivariant Gromov–Witten invariants, Internat. Math. Res. Notices, 1996, no. 13, 613–663.
Goldstein, E., Prokushkin, S.: Geometric model for complex non-Kähler manifolds with SU(3) structure. Comm. Math. Phys. 251, 65–78 (2004)
Hirzebruch, F.: Arithmetic genera and the theorem of Riemann-Roch for algebraic varieties. Proc. Nat. Acad. Sci. U.S.A. 40, 110–114 (1954)
F. Hirzebruch and K. Kodaira, On the complex projective spaces, J. Math. Pures Appl. (9), 36 (1957), 201–216.
H. Hopf, Zur Topologie der komplexen Mannigfaltigkeiten, In: Studies and Essays Presented to R. Courant on his 60th Birthday, Interscience Publishers, New York, 1948, pp. 167–185.
S.B. Johnson and W. Taylor, Calabi–Yau threefolds with large \(h^{2,1}\), J. High Energy Phys., 2014, 10-023.
Kähler, E.: Über eine bemerkenswerte Hermitesche Metrik. Abh. Math. Sem. Univ. Hamburg 9, 173–186 (1933)
Kawamata, Y.: On the finiteness of generators of a pluricanonical ring for a 3-fold of general type. Amer. J. Math. 106, 1503–1512 (1984)
Kawamata, Y.: Pluricanonical systems on minimal algebraic varieties. Invent. Math. 79, 567–588 (1985)
F. Klein, Riemannsche Flächen, Vorlesungen, gehalten in Göttingen 1891/92, Reprinted by Springer, 1986.
Kollár, J., Matsusaka, T.: Riemann-Roch type inequalities. Amer. J. Math. 105, 229–252 (1983)
Kollár, J., Miyaoka, Y., Mori, S.: Rational connectedness and boundedness of Fano manifolds. J. Differential Geom. 36, 765–779 (1992)
M. Kontsevich, Homological algebra of mirror symmetry, In: Proceedings of the International Congress of Mathematicians. Vol. 1, 2, Zürich, 1994, Birkhäuser, Basel, 1995, pp. 120–139.
Kool, M., Shende, V., Thomas, R.P.: A short proof of the Göttsche conjecture. Geom. Topol. 15, 397–406 (2011)
S.-C. Lau and J. Zhou, Modularity of open Gromov–Witten potentials of elliptic orbifolds, preprint, arXiv:1412.1499.
Leung, N.C.: Einstein type metrics and stability on vector bundles. J. Differential Geom. 45, 514–546 (1997)
Li, J., Yau, S.-T.: The existence of supersymmetric string theory with torsion. J. Differential Geom. 70, 143–181 (2005)
Li, J., Yau, S.-T., Zheng, F.: A simple proof of Bogomolov's theorem on class \({\rm VII}_0\) surfaces with \(b_2=0\). Illinois J. Math. 34, 217–220 (1990)
Lian, B.H., Liu, K., Yau, S.-T.: Mirror principle. I. Asian J. Math. 1, 729–763 (1997)
Lian, B.H., Yau, S.-T.: Period integrals of CY and general type complete intersections. Invent. Math. 191, 35–89 (2013)
Lichnerowicz, A.: Géométrie des groupes de transformations. Travaux et Recherches Mathématiques. III, Dunod, Paris (1958)
Liu, K., Sun, X., Yau, S.-T.: Canonical metrics on the moduli space of Riemann surfaces. I. J. Differential Geom. 68, 571–637 (2004)
Liu, K., Sun, X., Yau, S.-T.: Canonical metrics on the moduli space of Riemann surfaces. II. J. Differential Geom. 69, 163–216 (2005)
Lu, Z.: On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch. Amer. J. Math. 122, 235–273 (2000)
Lu, S.S.-Y., Yau, S.-T.: Holomorphic curves in surfaces of general type. Proc. Nat. Acad. Sci. U.S.A. 87, 80–82 (1990)
Luo, H.: Geometric criterion for Gieseker-Mumford stability of polarized manifolds. J. Differential Geom. 49, 577–599 (1998)
M. Mariño, R. Minasian, G. Moore and A. Strominger, Nonlinear instantons from supersymmetric \(p\)-branes, J. High Energy Phys., 2000, 01-005.
Martelli, D., Sparks, J., Yau, S.-T.: Sasaki-Einstein manifolds and volume minimisation. Comm. Math. Phys. 280, 611–673 (2008)
Maruyama, M.: Boundedness of semistable sheaves of small ranks. Nagoya Math. J. 78, 65–94 (1980)
Matsusaka, T.: On canonically polarized varieties. II. Amer. J. Math. 92, 283–292 (1970)
Matsusaka, T.: Polarized varieties with a given Hilbert polynomial. Amer. J. Math. 94, 1027–1077 (1972)
Matsushima, Y.: Sur la structure du groupe d'homéomorphismes analytiques d'une certaine variété kählérienne. Nagoya Math. J. 11, 145–150 (1957)
Mehta, V.B., Ramanathan, A.: Restriction of stable sheaves and representations of the fundamental group. Invent. Math. 77, 163–172 (1984)
Michelsohn, M.L.: On the existence of special metrics in complex geometry. Acta Math. 149, 261–295 (1982)
Miyaoka, Y.: On the Chern numbers of surfaces of general type. Invent. Math. 42, 225–237 (1977)
Y. Miyaoka, Algebraic surfaces with positive indices, In: Classification of Algebraic and Analytic Manifolds, Katata, 1982, Progr. Math., 39, Birkhäuser Boston, Boston, MA, 1983, pp. 281–301.
Mochizuki, T.: Kobayashi-Hitchin Correspondence for Tame Harmonic Bundles and an Application, Astérisque, 309. Soc. Math. France, Paris (2006)
S. Mori, Projective manifolds with ample tangent bundles, Ann. of Math. (2), 110 (1979), 593–606.
D.R. Morrison and W. Taylor, Matter and singularities, preprint, arXiv:1106.3563.
Mukai, S.: Duality between \( D (X) \) and \( D (\hat{X}) \) with its application to Picard sheaves. Nagoya Math. J. 81, 153–175 (1981)
H.L. Royden, Automorphisms and isometries of Teichmüller space, In: 1971 Advances in the Theory of Riemann Surfaces, Proc. Conf., Stony Brook, NY, 1969, Ann. of Math. Stud., 66, Princeton Univ. Press, Princeton, NJ, pp. 369–383.
Schoen, R., Yau, S.-T.: On the structure of manifolds with positive scalar curvature. Manuscripta Math. 28, 159–183 (1979)
Y. Shen and J. Zhou, Ramanujan identities and quasi-modularity in Gromov–Witten theory, preprint, arXiv:1411.2078.
C.L. Siegel, Topics in Complex Function Theory, Interscience Tracts in Pure and Applied Mathematics, 25, Vol. I, 1969; Vol. II, 1971; Vol. III, 1973.
Simpson, C.T.: Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization. J. Amer. Math. Soc. 1, 867–918 (1988)
Y.T. Siu and S.-T. Yau, Complete Kähler manifolds with nonpositive curvature of faster than quadratic decay, Ann. of Math. (2), 105 (1977), 225–264.
Strominger, A., Yau, S.-T., Zaslow, E.: Mirror symmetry is \(T\)-duality. Nuclear Phys. B 479, 243–259 (1996)
Tian, G., Yau, S.-T.: Complete Kähler manifolds with zero Ricci curvature. I. J. Amer. Math. Soc. 3, 579–609 (1990)
Tian, G., Yau, S.-T.: Complete Kähler manifolds with zero Ricci curvature. II. Invent. Math. 106, 27–60 (1991)
V. Tosatti and X. Yang, An extension of a theorem of Wu–Yau, preprint, arXiv:1506.01145.
Tsai, C.-J., Tseng, L.-S., Yau, S.-T.: Symplectic cohomologies on phase space. J. Math. Phys. 53, 095217 (2012)
Tseng, L.-S., Yau, S.-T.: Cohomology and Hodge theory on symplectic manifolds: I. J. Differential Geom. 91, 383–416 (2012)
Tseng, L.-S., Yau, S.-T.: Cohomology and Hodge theory on symplectic manifolds: II. J. Differential Geom. 91, 417–443 (2012)
Tzeng, Y.-J.: A proof of the Göttsche-Yau-Zaslow formula. J. Differential Geom. 90, 439–472 (2012)
Uhlenbeck, K., Yau, S.-T.: On the existence of Hermitian-Yang-Mills connections in stable vector bundles. Comm. Pure Appl. Math. 39, S257–S293 (1986)
Weyl, H.: Die Idee der Riemannschen Fläche. Teubner, Leipzig (1913)
Witten, E., Yau, S.-T.: Connectedness of the boundary in the AdS/CFT correspondence. Adv. Theor. Math. Phys. 3, 1635–1655 (1999)
D. Wu and S.-T. Yau, Negative holomorphic curvature and positive canonical bundle, preprint, arXiv:1505.05802.
S. Yamaguchi and S.-T. Yau, Topological string partition functions as polynomials, J. High Energy Phys., 2004, 07-047.
Yang, C.N.: Conditions of self-duality for \(SU(2)\) gauge fields on Euclidean four-dimensional space. Phys. Rev. Lett. 38, 1377–1379 (1977)
Yau, S.-T.: Intrinsic measures of compact complex manifolds. Math. Ann. 212, 317–329 (1975)
Yau, S.-T.: Calabi's conjecture and some new results in algebraic geometry. Proc. Nat. Acad. Sci. U.S.A. 74, 1798–1799 (1977)
Yau, S.-T.: Métriques de Kähler-Einstein sur les variétés ouvertes. Astérisque 58, 163–167 (1978)
Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I. Comm. Pure Appl. Math. 31, 339–411 (1978)
S.-T. Yau, The role of partial differential equations in differential geometry, In: Proceedings of the International Congress of Mathematicians, Helsinki, 1978, Acad. Sci. Fennica, Helsinki, 1980, pp. 237–250.
S.-T. Yau, Nonlinear Analysis in Geometry, Monog. Enseign. Math., 33, Série des Conférences de l'Union Mathématique Internationale, 8, L'Enseignement Mathématique, Geneva, 1986.
S.-T. Yau, A review of complex differential geometry, In: Several Complex Variables and Complex Geometry. Part 2, Santa Cruz, CA, 1989, Proc. Sympos. Pure Math., 52, Part 2, Amer. Math. Soc., Providence, RI, 1991, pp. 619–625.
S.-T. Yau, Open problems in geometry, In: Differential Geometry: Partial Differential Equations on Manifolds, Los Angeles, CA, 1990, Proc. Sympos. Pure Math., 54, Part 1, Amer. Math. Soc., Providence, RI, 1993, pp. 1–28.
Yau, S.-T.: A splitting theorem and an algebraic geometric characterization of locally Hermitian symmetric spaces. Comm. Anal. Geom. 1, 473–486 (1993)
Yau, S.-T., Zaslow, E.: BPS states, string duality, and nodal curves on K3. Nuclear Phys. B 471, 503–512 (1996)
Yau, S.-T., Zhang, Y.: The geometry on smooth toroidal compactifications of Siegel varieties. Amer. J. Math. 136, 859–941 (2014)
S. Zelditch, Szegő kernel and a theorem of Tian, Internat. Math. Res. Notices, 1998, 317–331.
Zhang, S.: Heights and reductions of semi-stable varieties. Compositio Math. 104, 77–105 (1996)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by: Hiraku Nakajima
This article is based on the 16th Takagi Lectures that the author delivered at the University of Tokyo on November 28 and 29, 2015.
About this article
Cite this article
Yau, ST. From Riemann and Kodaira to Modern Developments on Complex Manifolds. Jpn. J. Math. 11, 265–303 (2016). https://doi.org/10.1007/s11537-016-1565-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11537-016-1565-6