Abstract
Synthetic theory of Ricci curvature bounds is reviewed, from the conditions which led to its birth, up to some of its latest developments.
This is a preview of subscription content,
to check access.Similar content being viewed by others
References
S. Adams, N. Dirr, M.A. Peletier and J. Zimmer, From a large-deviations principle to the Wasserstein gradient flow: a new micro-macro passage, Comm. Math. Phys., 307 (2011), 791–815.
S. Amari and H. Nagaoka, Methods of Information Geometry. Translated from the 1993 Japanese Original by Daishi Harada, Transl. Math. Monogr., 191, Amer. Math. Soc., Providence, RI; Oxford Univ. Press, Oxford, 2000.
L. Ambrosio, Lecture notes on optimal transport problems, In: Mathematical Aspects of Evolving Interfaces, Funchal, 2000, Lecture Notes in Math., 1812, Springer-Verlag, 2003, pp. 1–52.
L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Mmeasures,Lectures Math. ETH Zurich, Birkhäuser Verlag, Basel, 2005.
L. Ambrosio, N. Gigli and G. Savaré, Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math., 195 (2014), 289–391.
L. Ambrosio, N. Gigli and G. Savaré, Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J., 163 (2014), 1405–1490.
L. Ambrosio, N. Gigli and G. Savaré, Bakry–Émery curvature-dimension condition and Riemannian Ricci curvature bounds, Ann. Probab., 43 (2015), 339–404.
L. Ambrosio, A. Mondino and G. Savaré, On the Bakry–Émery condition, the gradient estimates and the local-to-global property of RCD*\((K,N)\) metric measure spaces, J. Geom. Anal., 26 (2016), 24–56.
L. Ambrosio, G. Savaré and L. Zambotti, Existence and stability for Fokker–Planck equations with log-concave reference measure, Probab. Theory Related Fields, 145 (2009), 517–564.
K. Bacher and K.-T. Sturm, Localization and tensorization properties of the curvature-dimension condition for metric measure spaces, J. Funct. Anal., 259 (2010), 28–56.
D. Burago, Y. Burago and S. Ivanov, A Course in Metric Geometry, Grad. Stud. Math., 33, Amer. Math. Soc., Providence, RI, 2001. Errata list available online at http://www.pdmi.ras.ru/staff/burag.
Y. Burago, M. Gromov and G.Ya. Perel'man, A.D. Aleksandrov spaces with curvatures bounded below, Uspekhi Mat. Nauk, 47, 2(284) (1992), 3–51.
F. Cavalletti, Monge problem in metric measure spaces with Riemannian curvature-dimension condition, Nonlinear Anal., 99 (2014), 136–151.
F. Cavalletti and A. Mondino, Measure rigidity of Ricci curvature lower bounds, Adv. Math., 286 (2016), 430–480.
F. Cavalletti and A. Mondino, Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds, preprint, 2015.
F. Cavalletti and A. Mondino, Sharp geometric and functional inequalities in metric measure spaces with lower Ricci curvature bounds, preprint, 2015.
T. Champion and L. De Pascale, The Monge problem in \({\mathbb{R}^d}\), Duke Math. J., 157 (2011), 551–572.
J. Cheeger and T.H. Colding, On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom., 46 (1997), 406–480; II, J. Differential Geom., 54 (2000), 13–35; III, J. Differential Geom., 54 (2000), 37–74.
D. Cordero-Erausquin, R.J. McCann and M. Schmuckenschläger, A Riemannian interpolation inequality à la Borell, Brascamp and Lieb, Invent. Math., 146 (2001), 219–257.
T.M. Cover and J.A. Thomas, Elements of Information Theory, Wiley Ser. Telecom., A Wiley-Interscience Publication, John Wiley & Sons Inc., New York, 1991.
Q. Deng and K.-T. Sturm, Localization and tensorization properties of the curvature-dimension condition for metric measure spaces. II, J. Funct. Anal., 260 (2011), 3718–3725.
M.P. do Carmo, Riemannian Geometry. Translated from the second Portuguese edition by Francis Flaherty, Math. Theory Appl., Birkhäuser Boston Inc., Boston, MA, 1992.
M. Erbar, K. Kuwada and K.-T. Sturm, On the equivalence of the entropic curvature-dimension condition and Bochner's inequality on metric measure spaces, Invent. Math., 201 (2015), 993–1071.
M. Erbar and J. Maas, Ricci curvature of finite Markov chains via convexity of the entropy, Arch. Ration. Mech. Anal., 206 (2012), 997–1038.
L.C. Evans and W. Gangbo, Differential Equations Methods for the Monge–Kantorovich Mass Transfer Problem, Mem. Amer. Math. Soc., 137, no. 653, Amer. Math. Soc., Providence, RI, 1999.
A. Figalli, Y.-H. Kim and R.J. McCann, When is multidimensional screening a convex program?, J. Econom. Theory, 146 (2011), 454–478.
A. Figalli, L. Rifford and C. Villani, Nearly round spheres look convex, Amer. J. Math., 134 (2012), 109–139.
K. Funano, Eigenvalues of Laplacian and multi-way isoperimetric constants on weighted Riemannian manifolds, preprint, 2014. Available online at https://sites.google.com/site/keifunanoshomepage/.
K. Funano and T. Shioya, Concentration, Ricci curvature, and eigenvalues of Laplacian, Geom. Funct. Anal., 23 (2013), 888–936.
S. Gallot, D. Hulin and J. Lafontaine, Riemannian Geometry. Second ed., Universitext, Springer-Verlag, 1990.
N. Garofalo and A. Mondino, Li–Yau and Harnack type inequalities in RCD*\((K,N)\) metric measure spaces, Nonlinear Anal., 95 (2014), 721–734.
N. Gigli, Optimal maps in non branching spaces with Ricci curvature bounded from below, Geom. Funct. Anal., 22 (2012), 990–999.
N. Gigli, On the Differential Structure of Metric Measure Spaces and Applications, Mem. Amer. Math. Soc., 236, no. 1113, Amer. Math. Soc., Providence, RI, 2015.
N. Gigli, Nonsmooth differential geometry—An approach tailored for spaces with Ricci curvature bounded from below, preprint, arXiv:1407.0809.
N. Gigli, The splitting theorem in non-smooth context, preprint, arXiv:1302.5555v1. An overview of the proof has also been published in Anal. Geom. Metr. Spaces, 2 (2014), 169–213.
N. Gozlan, A characterization of dimension free concentration in terms of transportation inequalities, Ann. Probab., 37 (2009), 2480–2498.
M. Gromov, Sign and geometric meaning of curvature, Rend. Sem. Mat. Fis. Milano, 61 (1991), 9–123.
N. Grunewald, F. Otto, C. Villani and M.G. Westdickenberg, A two-scale approach to logarithmic Sobolev inequalities and the hydrodynamic limit, Ann. Inst. Henri Poincaré Probab. Stat., 45 (2009), 302–351.
S. Honda, A weakly second-order differential structure on rectifiable metric measure spaces, Geom. Topol., 18 (2014), 633–668.
R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker–Planck equation, SIAM J. Math. Anal., 29 (1998), 1–17.
N. Juillet, Geometric inequalities and generalized Ricci bounds in the Heisenberg group, Int. Math. Res. Not. IMRN, 2009, 2347–2373.
C. Ketterer, Cones over metric measure spaces and the maximal diameter theorem, J. Math. Pures Appl. (9), 103 (2015), 1228–1275.
K. Kuwada, Duality on gradient estimates and Wasserstein controls, J. Funct. Anal., 258 (2010), 3758–3774.
K. Kuwae and T. Shioya, On generalized measure contraction property and energy functionals over Lipschitz maps, Potential Anal., 15 (2001), 105–121.
K. Kuwae and T. Shioya, Sobolev and Dirichlet spaces over maps between metric spaces, J. Reine Angew. Math., 555 (2003), 39–75.
M. Ledoux, The Concentration of Measure Phenomenon, Math. Surveys Monogr., 89, Amer. Math. Soc., Providence, RI, 2001.
S. Liu, An optimal dimension-free upper bound for eigenvalue ratios, preprint, arXiv:1405.2213.
G. Loeper, On the regularity of solutions of optimal transportation problems, Acta Math., 202 (2009), 241–283.
G. Loeper and C. Villani, Regularity of optimal transport in curved geometry: the nonfocal case, Duke Math. J., 151 (2010), 431–485.
J. Lott, Optimal transport and Perelman's reduced volume, Calc. Var. Partial Differential Equations, 36 (2009), 49–84.
J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2), 169 (2009), 903–991.
X.-N. Ma, N.S. Trudinger and X.-J. Wang, Regularity of potential functions of the optimal transportation problem, Arch. Ration. Mech. Anal., 177 (2005), 151–183.
K. Marton, A measure concentration inequality for contracting Markov chains, Geom. Funct. Anal., 6 (1996), 556–571.
R.J. McCann, A convexity principle for interacting gases, Ph.D. thesis, Princeton Univ., 1994; Adv. Math., 128 (1997), 153–179.
R.J. McCann and P.M. Topping, Ricci flow, entropy and optimal transportation, Amer. J. Math., 132 (2010), 711–730.
A. Mondino and A. Naber, Structure theory of metric-measure spaces with lower Ricci curvature bounds I, preprint, arXiv:1405.2222.
S. Ohta, On the measure contraction property of metric measure spaces, Comment. Math. Helv., 82 (2007), 805–828.
S. Ohta, Optimal transport and Ricci curvature in Finsler geometry, In: Probabilistic Approach to Geometry, Adv. Stud. Pure Math., 57, Math. Soc. Japan, Tokyo, 2010, pp. 323–342.
Y. Ollivier, A survey of Ricci curvature for metric spaces and Markov chains, In: Probabilistic Approach to Geometry, Adv. Stud. Pure Math., 57, Math. Soc. Japan, Tokyo, 2010, pp. 343–381.
Y. Ollivier and C. Villani, A curved Brunn–Minkowski inequality on the discrete hypercube, or: What is the Ricci curvature of the discrete hypercube?, SIAM J. Discrete Math., 26 (2012), 983–996.
F. Otto, The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations, 26 (2001), 101–174.
F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal., 173 (2000), 361–400.
A. Petrunin, Alexandrov meets Lott–Villani–Sturm, Münster J. Math., 4 (2011), 53–64.
T. Rajala, Local Poincaré inequalities from stable curvature conditions on metric spaces, Calc. Var. Partial Differential Equations, 44 (2012), 477–494.
G. Savaré, Self-improvement of the Bakry–Émery condition and Wasserstein contraction of the heat flow in \((K,\infty )\) metric measure spaces, Discrete Contin. Dyn. Syst., 34 (2014), 1641–1661.
K.-T. Sturm, Diffusion processes and heat kernels on metric spaces, Ann. Probab., 26 (1998), 1–55.
K.-T. Sturm, On the geometry of metric measure spaces. I, Acta Math., 196 (2006), 65–131; II, Acta Math., 196 (2006), 133–177.
K.-T. Sturm, Entropic measure on multidimensional spaces, In: Seminar on Stochastic Analysis, Random Fields and Applications VI, Progr. Probab., 63, Birkhäuser, Basel, 2011.
K.-T. Sturm and M.-K. von Renesse, Transport inequalities, gradient estimates, entropy, and Ricci curvature, Comm. Pure Appl. Math., 58 (2005), 923–940.
P. Topping, \({\cal L}\)-optimal transportation for Ricci flow, J. Reine Angew. Math., 636 (2009), 93–122.
C. Villani, Topics in Optimal Transportation, Grad. Stud. Math., 58, Amer. Math. Soc., Providence, RI, 2003.
C. Villani, Stability of a 4th-order curvature condition arising in optimal transport theory, J. Funct. Anal., 255 (2008), 2683–2708.
C. Villani, Optimal Transport. Old and New, Grundlehren Math. Wiss., 338, Springer-Verlag, 2009.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by: Toshiyuki Kobayashi
This article is based on the 15th Takagi Lectures that the author delivered at Tohoku University on June 27 and 28, 2015.
About this article
Cite this article
Villani, C. Synthetic theory of Ricci curvature bounds. Jpn. J. Math. 11, 219–263 (2016). https://doi.org/10.1007/s11537-016-1531-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11537-016-1531-3