Japanese Journal of Mathematics

, Volume 11, Issue 2, pp 219–263 | Cite as

Synthetic theory of Ricci curvature bounds

Takagi Lectures

Abstract

Synthetic theory of Ricci curvature bounds is reviewed, from the conditions which led to its birth, up to some of its latest developments.

Keywords and phrases

Ricci curvature optimal transport metric geometry synthetic geometry information geometry 

Mathematics Subject Classification (2010)

53B21 90C08 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Adams, N. Dirr, M.A. Peletier and J. Zimmer, From a large-deviations principle to the Wasserstein gradient flow: a new micro-macro passage, Comm. Math. Phys., 307 (2011), 791–815.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    S. Amari and H. Nagaoka, Methods of Information Geometry. Translated from the 1993 Japanese Original by Daishi Harada, Transl. Math. Monogr., 191, Amer. Math. Soc., Providence, RI; Oxford Univ. Press, Oxford, 2000.Google Scholar
  3. 3.
    L. Ambrosio, Lecture notes on optimal transport problems, In: Mathematical Aspects of Evolving Interfaces, Funchal, 2000, Lecture Notes in Math., 1812, Springer-Verlag, 2003, pp. 1–52.Google Scholar
  4. 4.
    L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Mmeasures,Lectures Math. ETH Zurich, Birkhäuser Verlag, Basel, 2005.MATHGoogle Scholar
  5. 5.
    L. Ambrosio, N. Gigli and G. Savaré, Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math., 195 (2014), 289–391.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    L. Ambrosio, N. Gigli and G. Savaré, Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J., 163 (2014), 1405–1490.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    L. Ambrosio, N. Gigli and G. Savaré, Bakry–Émery curvature-dimension condition and Riemannian Ricci curvature bounds, Ann. Probab., 43 (2015), 339–404.MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    L. Ambrosio, A. Mondino and G. Savaré, On the Bakry–Émery condition, the gradient estimates and the local-to-global property of RCD*\((K,N)\) metric measure spaces, J. Geom. Anal., 26 (2016), 24–56.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    L. Ambrosio, G. Savaré and L. Zambotti, Existence and stability for Fokker–Planck equations with log-concave reference measure, Probab. Theory Related Fields, 145 (2009), 517–564.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    K. Bacher and K.-T. Sturm, Localization and tensorization properties of the curvature-dimension condition for metric measure spaces, J. Funct. Anal., 259 (2010), 28–56.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    D. Burago, Y. Burago and S. Ivanov, A Course in Metric Geometry, Grad. Stud. Math., 33, Amer. Math. Soc., Providence, RI, 2001. Errata list available online at http://www.pdmi.ras.ru/staff/burag.
  12. 12.
    Y. Burago, M. Gromov and G.Ya. Perel'man, A.D. Aleksandrov spaces with curvatures bounded below, Uspekhi Mat. Nauk, 47, 2(284) (1992), 3–51.Google Scholar
  13. 13.
    F. Cavalletti, Monge problem in metric measure spaces with Riemannian curvature-dimension condition, Nonlinear Anal., 99 (2014), 136–151.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    F. Cavalletti and A. Mondino, Measure rigidity of Ricci curvature lower bounds, Adv. Math., 286 (2016), 430–480.MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    F. Cavalletti and A. Mondino, Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds, preprint, 2015.Google Scholar
  16. 16.
    F. Cavalletti and A. Mondino, Sharp geometric and functional inequalities in metric measure spaces with lower Ricci curvature bounds, preprint, 2015.Google Scholar
  17. 17.
    T. Champion and L. De Pascale, The Monge problem in \({\mathbb{R}^d}\), Duke Math. J., 157 (2011), 551–572.MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    J. Cheeger and T.H. Colding, On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom., 46 (1997), 406–480; II, J. Differential Geom., 54 (2000), 13–35; III, J. Differential Geom., 54 (2000), 37–74.Google Scholar
  19. 19.
    D. Cordero-Erausquin, R.J. McCann and M. Schmuckenschläger, A Riemannian interpolation inequality à la Borell, Brascamp and Lieb, Invent. Math., 146 (2001), 219–257.MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    T.M. Cover and J.A. Thomas, Elements of Information Theory, Wiley Ser. Telecom., A Wiley-Interscience Publication, John Wiley & Sons Inc., New York, 1991.Google Scholar
  21. 21.
    Q. Deng and K.-T. Sturm, Localization and tensorization properties of the curvature-dimension condition for metric measure spaces. II, J. Funct. Anal., 260 (2011), 3718–3725.MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    M.P. do Carmo, Riemannian Geometry. Translated from the second Portuguese edition by Francis Flaherty, Math. Theory Appl., Birkhäuser Boston Inc., Boston, MA, 1992.Google Scholar
  23. 23.
    M. Erbar, K. Kuwada and K.-T. Sturm, On the equivalence of the entropic curvature-dimension condition and Bochner's inequality on metric measure spaces, Invent. Math., 201 (2015), 993–1071.MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    M. Erbar and J. Maas, Ricci curvature of finite Markov chains via convexity of the entropy, Arch. Ration. Mech. Anal., 206 (2012), 997–1038.MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    L.C. Evans and W. Gangbo, Differential Equations Methods for the Monge–Kantorovich Mass Transfer Problem, Mem. Amer. Math. Soc., 137, no. 653, Amer. Math. Soc., Providence, RI, 1999.Google Scholar
  26. 26.
    A. Figalli, Y.-H. Kim and R.J. McCann, When is multidimensional screening a convex program?, J. Econom. Theory, 146 (2011), 454–478.MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    A. Figalli, L. Rifford and C. Villani, Nearly round spheres look convex, Amer. J. Math., 134 (2012), 109–139.MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    K. Funano, Eigenvalues of Laplacian and multi-way isoperimetric constants on weighted Riemannian manifolds, preprint, 2014. Available online at https://sites.google.com/site/keifunanoshomepage/.
  29. 29.
    K. Funano and T. Shioya, Concentration, Ricci curvature, and eigenvalues of Laplacian, Geom. Funct. Anal., 23 (2013), 888–936.MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    S. Gallot, D. Hulin and J. Lafontaine, Riemannian Geometry. Second ed., Universitext, Springer-Verlag, 1990.CrossRefMATHGoogle Scholar
  31. 31.
    N. Garofalo and A. Mondino, Li–Yau and Harnack type inequalities in RCD*\((K,N)\) metric measure spaces, Nonlinear Anal., 95 (2014), 721–734.MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    N. Gigli, Optimal maps in non branching spaces with Ricci curvature bounded from below, Geom. Funct. Anal., 22 (2012), 990–999.MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    N. Gigli, On the Differential Structure of Metric Measure Spaces and Applications, Mem. Amer. Math. Soc., 236, no. 1113, Amer. Math. Soc., Providence, RI, 2015.Google Scholar
  34. 34.
    N. Gigli, Nonsmooth differential geometry—An approach tailored for spaces with Ricci curvature bounded from below, preprint, arXiv:1407.0809.
  35. 35.
    N. Gigli, The splitting theorem in non-smooth context, preprint, arXiv:1302.5555v1. An overview of the proof has also been published in Anal. Geom. Metr. Spaces, 2 (2014), 169–213.
  36. 36.
    N. Gozlan, A characterization of dimension free concentration in terms of transportation inequalities, Ann. Probab., 37 (2009), 2480–2498.MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    M. Gromov, Sign and geometric meaning of curvature, Rend. Sem. Mat. Fis. Milano, 61 (1991), 9–123.MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    N. Grunewald, F. Otto, C. Villani and M.G. Westdickenberg, A two-scale approach to logarithmic Sobolev inequalities and the hydrodynamic limit, Ann. Inst. Henri Poincaré Probab. Stat., 45 (2009), 302–351.MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    S. Honda, A weakly second-order differential structure on rectifiable metric measure spaces, Geom. Topol., 18 (2014), 633–668.MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker–Planck equation, SIAM J. Math. Anal., 29 (1998), 1–17.MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    N. Juillet, Geometric inequalities and generalized Ricci bounds in the Heisenberg group, Int. Math. Res. Not. IMRN, 2009, 2347–2373.Google Scholar
  42. 42.
    C. Ketterer, Cones over metric measure spaces and the maximal diameter theorem, J. Math. Pures Appl. (9), 103 (2015), 1228–1275.Google Scholar
  43. 43.
    K. Kuwada, Duality on gradient estimates and Wasserstein controls, J. Funct. Anal., 258 (2010), 3758–3774.MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    K. Kuwae and T. Shioya, On generalized measure contraction property and energy functionals over Lipschitz maps, Potential Anal., 15 (2001), 105–121.MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    K. Kuwae and T. Shioya, Sobolev and Dirichlet spaces over maps between metric spaces, J. Reine Angew. Math., 555 (2003), 39–75.MathSciNetMATHGoogle Scholar
  46. 46.
    M. Ledoux, The Concentration of Measure Phenomenon, Math. Surveys Monogr., 89, Amer. Math. Soc., Providence, RI, 2001.Google Scholar
  47. 47.
    S. Liu, An optimal dimension-free upper bound for eigenvalue ratios, preprint, arXiv:1405.2213.
  48. 48.
    G. Loeper, On the regularity of solutions of optimal transportation problems, Acta Math., 202 (2009), 241–283.MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    G. Loeper and C. Villani, Regularity of optimal transport in curved geometry: the nonfocal case, Duke Math. J., 151 (2010), 431–485.MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    J. Lott, Optimal transport and Perelman's reduced volume, Calc. Var. Partial Differential Equations, 36 (2009), 49–84.MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2), 169 (2009), 903–991.Google Scholar
  52. 52.
    X.-N. Ma, N.S. Trudinger and X.-J. Wang, Regularity of potential functions of the optimal transportation problem, Arch. Ration. Mech. Anal., 177 (2005), 151–183.MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    K. Marton, A measure concentration inequality for contracting Markov chains, Geom. Funct. Anal., 6 (1996), 556–571.MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    R.J. McCann, A convexity principle for interacting gases, Ph.D. thesis, Princeton Univ., 1994; Adv. Math., 128 (1997), 153–179.Google Scholar
  55. 55.
    R.J. McCann and P.M. Topping, Ricci flow, entropy and optimal transportation, Amer. J. Math., 132 (2010), 711–730.MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    A. Mondino and A. Naber, Structure theory of metric-measure spaces with lower Ricci curvature bounds I, preprint, arXiv:1405.2222.
  57. 57.
    S. Ohta, On the measure contraction property of metric measure spaces, Comment. Math. Helv., 82 (2007), 805–828.MathSciNetCrossRefMATHGoogle Scholar
  58. 58.
    S. Ohta, Optimal transport and Ricci curvature in Finsler geometry, In: Probabilistic Approach to Geometry, Adv. Stud. Pure Math., 57, Math. Soc. Japan, Tokyo, 2010, pp. 323–342.Google Scholar
  59. 59.
    Y. Ollivier, A survey of Ricci curvature for metric spaces and Markov chains, In: Probabilistic Approach to Geometry, Adv. Stud. Pure Math., 57, Math. Soc. Japan, Tokyo, 2010, pp. 343–381.Google Scholar
  60. 60.
    Y. Ollivier and C. Villani, A curved Brunn–Minkowski inequality on the discrete hypercube, or: What is the Ricci curvature of the discrete hypercube?, SIAM J. Discrete Math., 26 (2012), 983–996.MathSciNetCrossRefMATHGoogle Scholar
  61. 61.
    F. Otto, The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations, 26 (2001), 101–174.MathSciNetCrossRefMATHGoogle Scholar
  62. 62.
    F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal., 173 (2000), 361–400.MathSciNetCrossRefMATHGoogle Scholar
  63. 63.
    A. Petrunin, Alexandrov meets Lott–Villani–Sturm, Münster J. Math., 4 (2011), 53–64.MathSciNetMATHGoogle Scholar
  64. 64.
    T. Rajala, Local Poincaré inequalities from stable curvature conditions on metric spaces, Calc. Var. Partial Differential Equations, 44 (2012), 477–494.MathSciNetCrossRefMATHGoogle Scholar
  65. 65.
    G. Savaré, Self-improvement of the Bakry–Émery condition and Wasserstein contraction of the heat flow in \((K,\infty )\) metric measure spaces, Discrete Contin. Dyn. Syst., 34 (2014), 1641–1661.MathSciNetCrossRefMATHGoogle Scholar
  66. 66.
    K.-T. Sturm, Diffusion processes and heat kernels on metric spaces, Ann. Probab., 26 (1998), 1–55.MathSciNetCrossRefMATHGoogle Scholar
  67. 67.
    K.-T. Sturm, On the geometry of metric measure spaces. I, Acta Math., 196 (2006), 65–131; II, Acta Math., 196 (2006), 133–177.Google Scholar
  68. 68.
    K.-T. Sturm, Entropic measure on multidimensional spaces, In: Seminar on Stochastic Analysis, Random Fields and Applications VI, Progr. Probab., 63, Birkhäuser, Basel, 2011.Google Scholar
  69. 69.
    K.-T. Sturm and M.-K. von Renesse, Transport inequalities, gradient estimates, entropy, and Ricci curvature, Comm. Pure Appl. Math., 58 (2005), 923–940.MathSciNetCrossRefMATHGoogle Scholar
  70. 70.
    P. Topping, \({\cal L}\)-optimal transportation for Ricci flow, J. Reine Angew. Math., 636 (2009), 93–122.MathSciNetMATHGoogle Scholar
  71. 71.
    C. Villani, Topics in Optimal Transportation, Grad. Stud. Math., 58, Amer. Math. Soc., Providence, RI, 2003.Google Scholar
  72. 72.
    C. Villani, Stability of a 4th-order curvature condition arising in optimal transport theory, J. Funct. Anal., 255 (2008), 2683–2708.MathSciNetCrossRefMATHGoogle Scholar
  73. 73.
    C. Villani, Optimal Transport. Old and New, Grundlehren Math. Wiss., 338, Springer-Verlag, 2009.Google Scholar

Copyright information

© The Mathematical Society of Japan and Springer Japan 2016

Authors and Affiliations

  1. 1.Université de Lyon Claude Bernard & French Academy of Sciences and Institut Henri PoincaréParis Cedex 05France

Personalised recommendations