Japanese Journal of Mathematics

, Volume 11, Issue 2, pp 305–331 | Cite as

Hurwitz theory and the double ramification cycle

Original Article


This survey grew out of notes accompanying a cycle of lectures at the workshop Modern Trends in Gromov–Witten Theory, in Hannover. The lectures are devoted to interactions between Hurwitz theory and Gromov–Witten theory, with a particular eye to the contributions made to the understanding of the Double Ramification Cycle, a cycle in the moduli space of curves that compactifies the double Hurwitz locus. We explore the algebro-combinatorial properties of single and double Hurwitz numbers, and the connections with intersection theoretic problems on appropriate moduli spaces. We survey several results by many groups of people on the subject, but, perhaps more importantly, collect a number of conjectures and problems which are still open.

Keywords and phrases

Hurwitz theory Gromov–Witten theory tropical geometry compactified Jacobian 

Mathematics Subject Classification (2010)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ACP12.
    Abramovich D., Caporaso L., Payne S.: The tropicalization of the moduli space of curves. Ann. Sci. Éc. Norm. Supér. (4) 48, 765–809 (2015)MathSciNetMATHGoogle Scholar
  2. AB84.
    Atiyah M.F., Bott R.: The moment map and equivariant cohomology. Topology 23, 1–28 (1984)MathSciNetCrossRefMATHGoogle Scholar
  3. BBM11.
    Bertrand B., Brugallé E., Mikhalkin G.: Tropical open Hurwitz numbers. Rend. Semin. Mat. Univ. Padova 125, 157–171 (2011)MathSciNetCrossRefMATHGoogle Scholar
  4. BSSZ.
    A. Buryak, S. Shadrin, L. Spitz and D. Zvonkine, Integrals of \({\psi}\)-classes over double ramification cycles, preprint, arXiv:1211.5273.
  5. Cap14.
    L. Caporaso, Gonality of algebraic curves and graphs, In: Algebraic and Complex Geometry, Springer Proc. Math. Stat., 71, Springer-Verlag, 2014, pp. 77–108.Google Scholar
  6. CJM10.
    Cavalieri R., Johnson P., Markwig H.: Tropical Hurwitz numbers. J. Algebraic Combin. 32, 241–265 (2010)MathSciNetCrossRefMATHGoogle Scholar
  7. CJM11.
    Cavalieri R., Johnson P., Markwig H.: Wall crossings for double Hurwitz numbers. Adv. Math. 228, 1894–1937 (2011)MathSciNetCrossRefMATHGoogle Scholar
  8. CM14.
    Cavalieri R., Marcus S.: Geometric perspective on piecewise polynomiality of double Hurwitz numbers. Canad. Math. Bull. 57, 749–764 (2014)MathSciNetCrossRefMATHGoogle Scholar
  9. CMR14a.
    R. Cavalieri, H. Markwig and D. Ranganathan, Tropical compactification and the Gromov–Witten theory of \({\mathbb{P}^1}\), preprint, arXiv:1410.2837.
  10. CMR14b.
    R. Cavalieri, H. Markwig and D. Ranganathan, Tropicalizing the space of admissible covers, preprint, arXiv:1401.4626.
  11. CM16.
    R. Cavalieri and E. Miles, Riemann Surfaces and Algebraic Curves. A First Course in Hurwitz Theory, London Math. Soc. Stud. Texts, Cambridge Univ. Press, Cambridge, to appear (2016).Google Scholar
  12. ELSV01.
    Ekedahl T., Lando S., Shapiro M., Vainshtein A.: Hurwitz numbers and intersections on moduli spaces of curves. Invent. Math. 146, 297–327 (2001)MathSciNetCrossRefMATHGoogle Scholar
  13. FP02.
    Fantechi B., Pandharipande R.: Stable maps and branch divisors. Compositio Math. 130, 345–364 (2002)MathSciNetCrossRefMATHGoogle Scholar
  14. FH91.
    W. Fulton and J. Harris, Representation Theory, Grad. Texts in Math., 129, Springer-Verlag, 1991.Google Scholar
  15. GJ97.
    Goulden I.P., Jackson D.M.: Transitive factorisations into transpositions and holomorphic mappings on the sphere. Proc. Amer. Math. Soc. 125, 51–60 (1997)MathSciNetCrossRefMATHGoogle Scholar
  16. GJV03.
    I.P. Goulden, D.M. Jackson and R. Vakil, Towards the geometry of double Hurwitz numbers, preprint, arXiv:math/0309440v1.
  17. GJV06.
    I.P. Goulden, D.M. Jackson and R. Vakil, A short proof of the \({\lambda_g}\)-conjecture without Gromov–Witten theory: Hurwitz theory and the moduli of curves, preprint, arXiv:math/0604297.
  18. GP99.
    Graber T., Pandharipande R.: Localization of virtual classes. Invent. Math. 135, 487–518 (1999)MathSciNetCrossRefMATHGoogle Scholar
  19. GV01.
    Graber T., Vakil R.: On the tautological ring of \({\overline{\mathscr{M}}_{g,n}}\). Turkish J. Math. 25, 237–243 (2001)MathSciNetMATHGoogle Scholar
  20. GV03a.
    Graber T., Vakil R.: Hodge integrals and Hurwitz numbers via virtual localization. Compositio Math. 135, 25–36 (2003)MathSciNetCrossRefMATHGoogle Scholar
  21. GV03b.
    T. Graber and R. Vakil, Relative virtual localization and vanishing of tautological classes on moduli spaces of curves, preprint, arXiv:math/0309227.
  22. GZa.
    S. Grushevsky and D. Zakharov, The double ramification cycle and the theta divisor, preprint, arXiv:1206.7001.
  23. GZb.
    S. Grushevsky and D. Zakharov, The zero section of the universal semiabelian variety, and the double ramification cycle, preprint, arXiv:1206.3534.
  24. Hai11.
    R. Hain, Normal functions and the geometry of moduli spaces of curves, preprint, arXiv:1102.4031.
  25. HM98.
    J. Harris and I. Morrison, Moduli of Curves, Grad. Texts in Math., 187, Springer-Verlag, 1998.Google Scholar
  26. HKK+03.
    K. Hori, S. Katz, A. Klemm, R. Pandharipande, R. Thomas, C. Vafa, R. Vakil and E. Zaslow, Mirror Symmetry, Clay Math. Monogr., 1, Amer. Math. Soc., Providence, RI, 2003.Google Scholar
  27. Hur91.
    Hurwitz A.: Ueber Riemann’sche Flächen mit gegebenen Verzweigungspunkten. Math. Ann. 39, 1–60 (1891)MathSciNetCrossRefGoogle Scholar
  28. JPPZ16.
    F. Janda, R. Pandharipande, A. Pixton and D. Zvonkine, Double ramification cycles on the moduli spaces of curves, preprint, arXiv:1602.04705.
  29. Joh12.
    P. Johnson, Hurwitz numbers, ribbon graphs, and tropicalization, In: Tropical Geometry and Integrable Systems, Contemp. Math., 580, Amer. Math. Soc., Providence, RI, 2012, pp. 55–72.Google Scholar
  30. JPT11.
    Johnson P., Pandharipande R., Tseng H.-H.: Abelian Hurwitz–Hodge integrals. Michigan Math. J. 60, 171–198 (2011)MathSciNetCrossRefMATHGoogle Scholar
  31. Kaz09.
    Kazarian M.: KP hierarchy for Hodge integrals. Adv. Math. 221, 1–21 (2009)MathSciNetCrossRefMATHGoogle Scholar
  32. Koc01.
    J. Kock, Notes on psi classes, http://mat.uab.es/~kock/GW/notes/psi-notes.pdf, 2001.
  33. Koc03.
    J. Kock, Frobenius Algebras and 2D Topological Quantum Field Theories, London Math. Soc. Stud. Texts, 59, Cambridge Univ. Press, Cambridge, 2004.Google Scholar
  34. MW13.
    S. Marcus and J. Wise, Stable maps to rational curves and the relative Jacobian, preprint, arXiv:1310.5981.
  35. Mum83.
    D. Mumford, Toward an enumerative geometry of the moduli space of curves, In: Arithmetic and Geometry. II, Progr. Math., 36, Birkhäuser Boston, Boston, MA, 1983, pp. 271–326.Google Scholar
  36. OP09.
    A. Okounkov and R. Pandharipande, Gromov–Witten theory, Hurwitz numbers, and matrix models, In: Algebraic Geometry—Seattle 2005. Part 1, Proc. Sympos. Pure Math., 80, Amer. Math. Soc., Providence, RI, 2009, pp. 325–414.Google Scholar
  37. Pan15.
    R. Pandharipande, Cycles on the moduli space of curves, 2015, https://sites.google.com/site/2015summerinstitute/home/videos_notes.
  38. PPZ15.
    Pandharipande R., Pixton A., Zvonkine D.: Relations on \({\overline{\mathscr{M}_{g,n}}}\) via 3-spin structures. J. Amer. Math. Soc. 28, 279–309 (2015)MathSciNetCrossRefMATHGoogle Scholar
  39. Sha09.
    Shadrin S.: On the structure of Goulden–Jackson–Vakil formula. Math. Res. Lett. 16, 703–710 (2009)MathSciNetCrossRefMATHGoogle Scholar
  40. SSV08.
    Shadrin S., Shapiro M., Vainshtein A.: Chamber behavior of double Hurwitz numbers in genus 0. Adv. Math. 217, 79–96 (2008)MathSciNetCrossRefMATHGoogle Scholar
  41. SZ07.
    Shadrin S., Zvonkine D.: Changes of variables in ELSV-type formulas. Michigan Math. J. 55, 209–228 (2007)MathSciNetCrossRefMATHGoogle Scholar
  42. Tar14.
    N. Tarasca, Double total ramifications for curves of genus 2, preprint, arXiv:1401.3057.
  43. Vak08.
    R. Vakil, The moduli space of curves and Gromov–Witten theory, In: Enumerative Invariants in Algebraic Geometry and String Theory, Lecture Notes in Math., 1947, Springer-Verlag, 2008, pp. 143–198.Google Scholar

Copyright information

© The Mathematical Society of Japan and Springer Japan 2016

Authors and Affiliations

  1. 1.Department of MathematicsColorado State UniversityFort CollinsUSA

Personalised recommendations