Japanese Journal of Mathematics

, Volume 11, Issue 1, pp 1–14 | Cite as

The Kervaire invariant problem

Takagi Lectures


The history and solution of the Kervaire invariant problem is discussed, along with some of the future prospects raised by its solution.

Keywords and phrases

Kervaire invariant framed manifold homotopy groups of spheres 

Mathematics Subject Classification (2010)

55Q45 55Q91 55N22 57R05 57R55 57R60 57R85 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams J.F.: On the non-existence of elements of Hopf invariant one. Ann. of Math. 72(2), 20–104 (1960)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Adams J.F.: Vector fields on spheres. Ann. of Math. 75(2), 603–632 (1962)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Atiyah M.F.: K-theory and reality. Quart. J. Math. Oxford Ser. 17(2), 367–386 (1966)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Barratt M.G., Jones J.D.S., Mahowald M.E.: Relations amongst Toda brackets and the Kervaire invariant in dimension 62. J. London Math. Soc. 30(2), 533–550 (1984)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    M.G. Barratt, M.E. Mahowald and M.C. Tangora, Some differentials in the Adams spectral sequence. II, Topology, 9 (1970), 309–316.Google Scholar
  6. 6.
    Browder W.: The Kervaire invariant of framed manifolds and its generalization. Ann. of Math. 90((2), 157–186 (1969)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    E.H. Brown, Jr. and F.P. Peterson, The Kervaire invariant of (8k + 2)-manifolds, Bull. Amer. Math. Soc., 71 (1965), 190–193.Google Scholar
  8. 8.
    E.H. Brown, Jr. and F.P. Peterson, The Kervaire invariant of (8k + 2)-manifolds, Amer. J. Math., 88 (1966), 815–826.Google Scholar
  9. 9.
    D. Dugger, An Atiyah–Hirzebruch spectral sequence for KR-theory. K-Theory. 35, 213–256 (2005)Google Scholar
  10. 10.
    Fujii M.: Cobordism theory with reality. Math. J. Okayama Univ. 18, 171–188 (1976)MathSciNetMATHGoogle Scholar
  11. 11.
    M.A. Hill, M.J. Hopkins and D.C. Ravenel, On the non-existence of elements of Kervaire invariant one, preprint, arXiv:0908.3724.
  12. 12.
    James I.M.: On the suspension sequence. Ann. of Math. 65(2), 74–107 (1957)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    James I.M.: Whitehead products and vector-fields on spheres. Proc. Cambridge Philos. Soc. 53, 817–820 (1957)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    I.M. James, The Topology of Stiefel Manifolds, London Math. Soc. Lecture Note Ser., 24, Cambridge Univ. Press, Cambridge, 1976.Google Scholar
  15. 15.
    Kervaire M.A.: A manifold which does not admit any differentiable structure. Comment. Math. Helv. 34, 257–270 (1960)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    M.A. Kervaire and J.W. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2), 77 (1963), 504–537.Google Scholar
  17. 17.
    Landweber P.S.: Conjugations on complex manifolds and equivariant homotopy of MU. Bull. Amer. Math. Soc. 74, 271–274 (1968)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Mahowald M., Tangora M.: Some differentials in the Adams spectral sequence. Topology. 6, 349–369 (1967)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Milnor J.W.: On manifolds homeomorphic to the 7-sphere. Ann. of Math. 64(2), 399–405 (1956)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    J.W. Milnor, A procedure for killing homotopy groups of differentiable manifolds, In: Proc. Sympos. Pure Math., Vol. III, Amer. Math. Soc., Providence, RI, 1961, pp. 39–55.Google Scholar
  21. 21.
    J.W. Milnor and M.A. Kervaire, Bernoulli numbers, homotopy groups, and a theorem of Rohlin, In: Proc. Internat. Congress Math. 1958, Cambridge Univ. Press, New York, NY, 1960, pp. 454–458.Google Scholar
  22. 22.
    Pontryagin L.S.: A classification of continuous transformations of a complex into a sphere. 1. Dokl. Akad. Nauk SSSR (N.S.). 19, 147–149 (1938)MATHGoogle Scholar
  23. 23.
    Pontryagin L.S.: A classification of continuous transformations of a complex into a sphere. 2. Dokl. Akad. Nauk SSSR (N.S.). 19, 361–363 (1938)MATHGoogle Scholar
  24. 24.
    Pontryagin L.S.: Homotopy classification of mappings of an (n + 2)-dimensional sphere on an n-dimensional one. (Russian). Dokl. Akad. Nauk SSSR (N.S.). 19, 957–959 (1950)MathSciNetMATHGoogle Scholar
  25. 25.
    Ravenel D.C.: The non-existence of odd primary Arf invariant elements in stable homotopy. Math. Proc. Cambridge Philos. Soc. 83, 429–443 (1978)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    D.C. Ravenel, Complex Cobordism and Stable Homotopy Groups of Spheres, Pure Appl. Math., 121, Academic Press, Orlando, FL, 1986.Google Scholar
  27. 27.
    C. Rezk, Notes on the Hopkins–Miller theorem, In: Homotopy Theory via Algebraic Geometry and Group Representations, Evanston, IL, 1997, Contemp. Math., 220, Amer. Math. Soc., Providence, RI, 1998, pp. 313–366.Google Scholar
  28. 28.
    Shimomura K.: Novikov’s Ext2 at the prime 2. Hiroshima Math. J. 11, 499–513 (1981)MathSciNetMATHGoogle Scholar
  29. 29.
    H. Toda, Composition Methods in Homotopy Groups of Spheres, Ann. of Math. Stud., 49, Princeton Univ. Press, Princeton, NJ, 1962.Google Scholar
  30. 30.
    V. Voevodsky, Open problems in the motivic stable homotopy theory. I, In: Motives, Polylogarithms and Hodge Theory. Part I, Irvine, CA, 1998, Int. Press Lect. Ser., 3, Int. Press, Somerville, MA, 2002, pp. 3–34.Google Scholar
  31. 31.
    Whitehead G.W.: The (n + 2)nd homotopy group of the n-sphere. Ann. of Math. 52(2), 245–247 (1950)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Whitehead G.W.: On the Freudenthal theorems. Ann. of Math. 57(2), 209–228 (1953)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Mathematical Society of Japan and Springer Japan 2016

Authors and Affiliations

  1. 1.Department of MathematicsHarvard UniversityCambridgeUSA

Personalised recommendations