Abstract
In the paper we consider the problem of computation of characters of relatively integrable irreducible highest weight modules L over finite-dimensional basic Lie superalgebras and over affine Lie superalgebras \({\mathfrak{g}}\). The problem consists of two parts. First, it is the reduction of the problem to the \({\overline{\mathfrak{g}}}\)-module F(L), where \({\overline{\mathfrak{g}}}\) is the associated to L integral Lie superalgebra and F(L) is an integrable irreducible highest weight \({\overline{\mathfrak{g}}}\)-module. Second, it is the computation of characters of integrable highest weight modules. There is a general conjecture concerning the first part, which we check in many cases. As for the second part, we prove in many cases the KW-character formula, provided that the KW-condition holds, including almost all finite-dimensional \({\mathfrak{g}}\)-modules when \({\mathfrak{g}}\) is basic, and all maximally atypical non-critical integrable \({\mathfrak{g}}\)-modules when \({\mathfrak{g}}\) is affine with non-zero dual Coxeter number.
Similar content being viewed by others
References
Bernšteĭn I.N., Leĭtes D.A.: A formula for the characters of the irreducible finite-dimensional representations of Lie superalgebras of series Gl and sl. C. R. Acad. Bulgare Sci. 33, 1049–1051 (1980)
Brundan J.: Kazhdan–Lusztig polynomials and character formulae for the Lie superalgebra \({\mathfrak{gl}(m|n)}\). J. Amer. Math. Soc. 16, 185–231 (2003)
S.-J. Cheng and J.-H. Kwon, Kac–Wakimoto character formula for ortho-symplectic Lie superalgebras, preprint, arXiv:1406.6739.
S.-J. Cheng, V. Mazorchuk and W. Wang, Equivalence of blocks for the general linear Lie superalgebra, preprint, arXiv:1301.1204.
M. Chmutov, C. Hoyt and S. Reif, Kac–Wakimoto character formula for the general linear Lie superalgebra, preprint, arXiv:1310.3798.
P. Fiebig, The combinatorics of category \({\mathcal{O}}\) over symmetrizable Kac–Moody algebras, Transform. Groups, 11 (2006), 29–49.
Gorelik M.: Weyl denominator identity for affine Lie superalgebras with non-zero dual Coxeter number. J. Algebra 337, 50–62 (2011)
M. Gorelik, Weyl denominator identity for finite-dimensional Lie superalgebras, In: Highlights in Lie Algebraic Methods, Progr. Math., 295, Birkhaüser/Springer, 2012, pp. 167–188.
Gorelik M., Kac V.G.: On simplicity of vacuum modules. Adv. Math. 211, 621–677 (2007)
M. Gorelik, V.G. Kac, P. Möseneder Frajria and P. Papi, Denominator identities for finite-dimensional Lie superalgebras and Howe duality for compact dual pairs, Jpn. J. Math., 7 (2012), 41–134.
Gorelik M., Reif S.: A denominator identity for affine Lie superalgebras with zero dual Coxeter number. Algebra Number Theory 6, 1043–1059 (2012)
Iohara K., Koga Y.: Enright functors for Kac–Moody superalgebras. Abh. Math. Semin. Univ. Hambg. 82, 205–226 (2012)
Kac V.G.: Lie superalgebras. Advances in Math. 26, 8–96 (1977)
V.G. Kac, Representations of classical Lie superalgebras, In: Differential Geometrical Methods in Mathematical Physics. II, Lecture Notes in Math., 676, Springer-Verlag, 1978, pp. 597–626.
V.G. Kac, Infinite-Dimensional Lie Algebras. Third ed., Cambridge Univ. Press, 1990.
Kac V.G., Kazhdan D.A.: Structure of representations with highest weight of infinite-dimensional Lie algebras. Adv. in Math. 34, 97–108 (1979)
V.G. Kac, S.-S. Roan and M. Wakimoto, Quantum reduction for affine superalgebras, Comm. Math. Phys., 241(2003), 307–342.
Kac V.G., Wakimoto M.: Modular invariant representations of infinite-dimensional Lie algebras and superalgebras. Proc. Nat. Acad. Sci. U.S.A. 85, 4956–4960 (1988)
V.G. Kac and M. Wakimoto, Classification of modular invariant representation of affine algebras, In: Infinite-Dimensional Lie Algebras and Groups, Adv. Ser. Math. Phys., 7, World Sci. Publ., 1989, pp. 138–177.
V.G. Kac and M. Wakimoto, Integrable highest weight modules over affine superalgebras and number theory, In: Lie Theory and Geometry, Progr. Math., 123, Birkhäuser Boston, Boston, MA, 1994, pp. 415–456.
Kac V.G., Wakimoto M.: Integrable highest weight modules over affine superalgebras and Appell’s function. Comm. Math. Phys. 215, 631–682 (2001)
Kac V.G., Wakimoto M.: Representations of affine superalgebras and mock theta functions. Transform. Groups. 19, 383–455 (2014)
V.G. Kac and M. Wakimoto, Representations of affine superalgebras and mock theta functions. II, preprint, arXiv:1402:0727, to appear in Adv. Math.
V.G. Kac and M. Wakimoto, Representations of affine superalgebras and mock theta functions. III, preprint, arXiv:1505.01047.
M. Kashiwara and T. Tanisaki, Kazhdan–Lusztig conjecture for symmetrizable Kac–Moody algebras. III. Positive rational case, In: Mikio Sato: A Great Japanese Mathematician of the Twentieth Century, Asian J. Math., 2, International Press, 1998, pp. 779–832.
M. Kashiwara and T. Tanisaki, Characters of the irreducible modules with non-critical highest weights over affine Lie algebras, In: Representations and Quantizations, Shanghai, 1998, China High. Educ. Press, Beijing, 2000, pp. 275–296.
S. Reif, Denominator Identity for twisted affine Lie superalgebras, Int. Math. Res. Not. IMRN, 2014, 4146–4178.
V. Serganova, Kazhdan–Lusztig polynomials and character formula for the Lie superalgebra \({\mathfrak{gl}(m|n)}\), Selecta Math. (N.S.), 2 (1996), 607–651.
Serganova V.: On generalizations of root systems. Comm. Algebra 24, 4281–4299 (1996)
V. Serganova, Characters of irreducible representations of simple Lie superalgebras, In: Proceedings of the International Congress of Mathematicians. Vol. II, Berlin, 1998, Doc. Math., 1998, pp. 583–593.
V. Serganova, Kac–Moody superalgebras and integrability, In: Developments and Trends in Infinite-Dimensional Lie Theory, Progr. Math., 288, Birkhäuser Boston, Boston, MA, 2011, pp. 169–218.
A. Shaviv, On the correspondence of affine generalized root systems and symmetrizable affine Kac–Moody superalgebras, M. Sc. thesis, 2014.
Su Y., Zhang R.B.: Character and dimension formulae for general linear superalgebra. Adv. Math. 211, 1–33 (2007)
Van der Jeugt J.: Irreducible representations of the exceptional Lie superalgebras \({D(2,1;\alpha)}\). J. Math. Phys. 26, 913–924 (1985)
Van der Jeugt J.: Character formulae for the Lie superalgebra C(n). Comm. Algebra 19, 199–222 (1991)
Van der Jeugt J., Hughes J.W.B., King R.C., Thierry-Mieg J.: Character formulas for irreducible modules of the Lie superalgebras \({\mathfrak{sl}(m/n)}\). J. Math. Phys., 31, 2278–2304 (1990)
S. Zwegers, Mock theta functions, preprint, arXiv:0807.4834.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by: Yasuyuki Kawahigashi
Maria Gorelik: Supported in part by BSF Grant No. 711623.
Victor G. Kac: Supported in part by Simons fellowship.
About this article
Cite this article
Gorelik, M., Kac, V.G. Characters of (relatively) integrable modules over affine Lie superalgebras. Jpn. J. Math. 10, 135–235 (2015). https://doi.org/10.1007/s11537-015-1464-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11537-015-1464-2
Keywords and phrases
- basic Lie superalgebra
- defect
- dual Coxeter number
- affine Lie superalgebra
- odd reflection
- integrable highest weight module over basic and affine Lie superalgebra
- maximally atypical module
- KW-condition
- Enright functor
- relatively integrable module
- character formula