Japanese Journal of Mathematics

, Volume 10, Issue 1, pp 97–104 | Cite as

Appendix: On some Gelfand pairs and commutative association schemes

Original Article


This paper is Appendix of the paper of T. Ceccherini-Silberstein, F. Scarabotti and F. Tolli [8].

We pay close attention on a special condition related to Gelfand pairs. Namely, we call a finite group G and its automorphism \({\sigma}\) satisfy Condition (\({\bigstar}\)) if the following condition is satisfied: if for \({x,\,y\,\in G}\), \({x\,\cdot\, x^{-\sigma}}\) and \({y\,\cdot\, y^{-\sigma}}\) are conjugate in G, then they are conjugate in \({K=C_G(\sigma)}\). The main purpose of the note was to study the meanings of this condition, as well as showing many examples of G and \({\sigma}\) which do (or do not) satisfy Condition (\({\bigstar}\)).

Keywords and phrases

Gelfand pair commutative association scheme 

Mathematis Subject Classification (2010)

20B05 20G40 05E30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Bannai, Character tables of commutative association schemes, In: Finite Geometries, Buildings, and Related Topics, (eds. W.M. Kantor et al.), Oxford Sci. Publ., Oxford Univ. Press, New York, 1990, pp. 105–128.Google Scholar
  2. 2.
    Bannai E., Hao S., Song S.-Y.: Character tables of the association schemes of finite orthogonal groups acting on the nonisotropic points. J Combin Theory Ser A. 54, 164–200 (1990)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bannai E., Ito T.: Algebraic Combinatorics. I. Association Schemes. Benjamin/Cummings, Menlo Park, CA (1984)MATHGoogle Scholar
  4. 4.
    Bannai E., Kawanaka N., Song S.-Y.: The character table of the Hecke algebra \({\fancyscript{H}({\rm GL}_{2n}(\mathbf{F}_q),{\rm Sp}_{2n}(\mathbf{F}_q))}\), J. Algebra, 129, 320–366 (1990)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Bannai E., Shimabukuro O., Tanaka H.: Finite analogues of non-Euclidean spaces and Ramanujan graphs, European J. Combin., 25, 243–259 (2004)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Bannai E., Song S.-Y., Hao S., Wei H.Z.: Character tables of certain association schemes coming from finite unitary and symplectic groups. J. Algebra. 144, 189–213 (1991)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    E. Bannai and H. Tanaka, The decomposition of the permutation character \({1_{GL(n,q^2)}^{GL(2n,q)}}\), J. Algebra, 265 (2003), 496–512.Google Scholar
  8. 8.
    T. Ceccherini-Silberstein, F. Scarabotti and F. Tolli, Mackey’s theory of \({\tau}\) -conjugate representations for finite groups, Jpn. J. Math., 10 (2015). doi:  10.1007/s11537-014-1390-8
  9. 9.
    Conway J.H., Curtis R.T., Norton S.P., Parker R.A., Wilson R.A.: Atlas of Finite Groups, Oxford Univ. Press, Eynsham. (1985)Google Scholar
  10. 10.
    Gow R.: Two multiplicity-free permutation representations of the general linear group \({GL(n,q^2)}\). Math. Z., 188, 45–54 (1984)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Green J.A.: The characters of the finite general linear groups, Trans. Amer. Math. Soc. 80, 402–447 (1955)CrossRefMATHGoogle Scholar
  12. 12.
    A. Henderson, Symmetric subgroup invariants in irreducible representations of \({G^{F}}\), when \({G = GL_n}\), J. Algebra, 261 (2003), 102–144.Google Scholar
  13. 13.
    N.F.J. Inglis, Multiplicity-free permutation characters, distance transitive graphs and classical groups. Ph. D. thesis, Cambridge 1988Google Scholar
  14. 14.
    N.F.J. Inglis, M.W. Liebeck and J. Saxl, Multiplicity-free permutation representations of finite linear groups, Math. Z., 192 (1986), 329–337.Google Scholar
  15. 15.
    Macdonald I.G.: Symmetric Functions and Hall Polynomials. 2nd ed. Oxford Math. Monogr. Oxford Univ. Press, New York (1995)MATHGoogle Scholar
  16. 16.
    J. Saxl, On multiplicity-free permutation representations, In: Finite Geometries and Designs, (eds. P.J. Cameron et al.), London Math. Soc. Lecture Note Ser., 49, Cambridge Univ. Press, Cambridge, 1981, pp. 337–353.Google Scholar
  17. 17.
    H. Tanaka, Some results on the multiplicity-free permutation group \({{\rm GL}(4, q)}\) acting on \({{\rm GL}(4, q)/{\rm GL}(2, q^2)}\). (Japanese), In: Codes, Lattices, Vertex Operator Algebras and Finite Groups, RIMS Kôkyûroku, 1228, Kyoto Univ., 2001, pp. 127–139.Google Scholar
  18. 18.
    A. Terras, Fourier Analysis on Finite Groups and Applications, London Math. Soc. Stud. Texts, 43, Cambridge Univ. Press, Cambridge, 1999.Google Scholar

Copyright information

© The Mathematical Society of Japan and Springer Japan 2014

Authors and Affiliations

  1. 1.Department of MathematicsShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Research Center for Pure and Applied Mathematics, Graduate School of Information SciencesTohoku UniversitySendaiJapan

Personalised recommendations