Japanese Journal of Mathematics

, Volume 10, Issue 1, pp 43–96 | Cite as

Mackey’s theory of \({\tau}\)-conjugate representations for finite groups

  • Tullio Ceccherini-Silberstein
  • Fabio Scarabotti
  • Filippo Tolli
Original Article


The aim of the present paper is to expose two contributions of Mackey, together with a more recent result of Kawanaka and Matsuyama, generalized by Bump and Ginzburg, on the representation theory of a finite group equipped with an involutory anti-automorphism (e.g. the anti-automorphism \({g \mapsto g^{-1}}\)). Mackey’s first contribution is a detailed version of the so-called Gelfand criterion for weakly symmetric Gelfand pairs. Mackey’s second contribution is a characterization of simply reducible groups (a notion introduced by Wigner). The other result is a twisted version of the Frobenius–Schur theorem, where “twisted” refers to the above-mentioned involutory anti-automorphism.

Keywords and phrases

representation theory of finite groups Gelfand pair Kronecker product simply reducible group Clifford groups Frobenius–Schur theorem 

Mathematics Subject Classification (2010)

20C15 43A90 20G40 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adin R.M., Postnikov A., Roichman Y.: A Gelfand model for wreath products. Israel J. Math. 179, 381–402 (2010)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Baddeley R.W.: Models and involution models for wreath products and certain Weyl groups. J. London Math. Soc. (2) 44, 55–74 (1991)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    E. Bannai and T. Ito, Algebraic Combinatorics. I. Association Schemes, Benjamin/Cummings, Menlo Park, CA, 1984.Google Scholar
  4. 4.
    Bannai E., Kawanaka N., Song S.-Y.: The character table of the Hecke algebra \({{\fancyscript H}({\rm GL}_{2n}(\mathbb{F}_q),{\rm Sp}_{2n}(\mathbb{F}_q))}\) . J. Algebra 129, 320–366 (1990)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    E. Bannai and H. Tanaka, Appendix: On some Gelfand pairs and commutative association schemes, Jpn. J. Math., 10 (2015). doi: 10.1007/s11537-014-1391-7
  6. 6.
    I.N. Bernstein, I.M. Gelfand and S.I. Gelfand, Models of representations of compact Lie groups, Functional Anal. Prilozh., 9, no. 4 (1975), 61–62.Google Scholar
  7. 7.
    D. Bump, Lie Groups, Grad. Texts in Math., 225, Springer-Verlag, 2004.Google Scholar
  8. 8.
    Butler P.H.: Point Group Symmetry Applications. Methods and Tables. Plenum Press, New York-London (1981)CrossRefMATHGoogle Scholar
  9. 9.
    Butler P.H., King R.C.: The symmetric group: characters, products and plethysms. J. Mathematical Phys. 14, 1176–1183 (1973)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Butler P.H., King R.C.: Symmetrized Kronecker products of group representations. Canad. J. Math. 26, 328–339 (1974)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Bump D., Ginzburg D.: Generalized Frobenius–Schur numbers. J. Algebra 278, 294–313 (2004)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Ceccherini-Silberstein T., Scarabotti F., Tolli F.: Trees, wreath products and finite Gelfand pairs. Adv. Math. 206, 503–537 (2006)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    T. Ceccherini-Silberstein, F. Scarabotti and F. Tolli, Harmonic Analysis on Finite Groups. Representation Theory, Gelfand Pairs and Markov Chains, Cambridge Stud. Adv. Math., 108, Cambridge Univ. Press, Cambridge, 2008.Google Scholar
  14. 14.
    Ceccherini-Silberstein T., Machì A., Scarabotti F., Tolli F.: Induced representation and Mackey theory. J. Math. Sci. (N. Y.) 156, 11–28 (2009)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Ceccherini-Silberstein T., Scarabotti F., Tolli F.: Clifford theory and applications. J. Math. Sci. (N. Y.) 156, 29–43 (2009)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    T. Ceccherini-Silberstein, F. Scarabotti and F. Tolli, Representation Theory of the Symmetric Groups, In: The Okounkov–Vershik Approach, Character Formulas, and Partition Algebras, Cambridge Stud. Adv. Math., 121, Cambridge Univ. Press, Cambridge, 2010.Google Scholar
  17. 17.
    T. Ceccherini-Silberstein, F. Scarabotti and F. Tolli, Multiplicity-free induced representations, in preparation.Google Scholar
  18. 18.
    T. Ceccherini-Silberstein, F. Scarabotti and F. Tolli, Mackey’s criterion for subgroup restriction of Kronecker products and harmonic analysis on Clifford groups, preprint, arXiv:1401.6767; Tohoku Math. J. (2), in press.
  19. 19.
    Clifford W.K.: Mathematical Papers. Macmillan, London (1882)Google Scholar
  20. 20.
    Derome J.-R.: Symmetry properties of the 3j-symbols for an arbitrary group. J. Mathematical Phys. 7, 612–615 (1966)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    P. Diaconis, Group Representations in Probability and Statistics, IMS Lecture Notes Monogr. Ser., Institute of Mathematical Statistics, Hayward, CA, 1988.Google Scholar
  22. 22.
    Dirac P.A.M.: The quantum theory of the electron. Proc. Roy. Soc. Ser. A 117, 610–624 (1928)CrossRefMATHGoogle Scholar
  23. 23.
    Eckmann B.: Gruppentheoretischer Beweis des Satzes von Hurwitz–Radon über die Komposition quadratischer Formen. Comment. Math. Helv. 15, 358–366 (1943)CrossRefMATHGoogle Scholar
  24. 24.
    Eddington A.S.: On sets of anticommuting matrices. J. London Math. Soc. 7, 58–68 (1932)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Eddington A.S.: On sets of anticommuting matrices. Part II: The foundations of E-numbers. J. London Math. Soc. 8, 142–152 (1933)Google Scholar
  26. 26.
    Esper N., Kerber A.: Permutrization of representations with applications to simple-phase groups and the enumeration of roots in groups and of conjugacy classes which are invariant under power maps. Mitt. Math. Sem. Giessen 121, 181–200 (1976)MathSciNetGoogle Scholar
  27. 27.
    P. Etingof, O. Golberg, S. Hensel, T. Liu, A. Schwendner, D. Vaintrob and E. Yudovina, Introduction to Representation Theory. With Historical Interludes by Slava Gerovitch, Stud. Math. Libr., 59, Amer. Math. Soc., Providence, RI, 2011.Google Scholar
  28. 28.
    Frobenius G., Schur I.: Über die reellen Darstellungen der endlichen Gruppen. Sitz.-Ber. Preuss. Akad. Wiss. 1906, 186–208 (1906)MATHGoogle Scholar
  29. 29.
    A. Garsia, Gelfand pairs in finite groups, unpublished MIT manuscript, 1985.Google Scholar
  30. 30.
    Garsia A.M., Remmel J.: Shuffles of permutations and the Kronecker product. Graphs Combin. 1, 217–263 (1985)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    A. Garsia, N. Wallach, G. Xin and M. Zabrocki, Kronecker coefficients via symmetric functions and constant term identities, Internat. J. Algebra Comput., 22 (2012), 1250022.Google Scholar
  32. 32.
    Gow R.: Properties of the characters of the finite general linear group related to the transpose-inverse involution. Proc. London Math. Soc. (3) 47, 493–506 (1983)CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Gow R.: Two multiplicity-free permutation representations of the general linear group GL(n, q 2). Math. Z. 188, 45–54 (1984)CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    J.S. Griffiths, The Irreducible Tensor Method for Molecular Symmetry Groups, Dover, 2006.Google Scholar
  35. 35.
    Gross B.H.: Some applications of Gel’fand pairs to number theory. Bull. Amer. Math. Soc. (N.S.) 24, 277–301 (1991)CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    M. Hamermesh, Group Theory and Its Application to Physical Problems, Addison-Wesley Series in Physics, Addison-Wesley Publishing Co., Inc., Reading, MA-London, 1962.Google Scholar
  37. 37.
    A. Hurwitz, Über die Komposition der quadratischen Formen von beliebig vielen Variabein, Nach. Ges. Wiss. Göttingen, Math.-Phys. Kl., 1898, 309–316, reprinted in Math. Werke II, 565–571.Google Scholar
  38. 38.
    A. Hurwitz, Über die Komposition der quadratischen Formen, Math. Ann., 88 (1923), 1–25, reprinted in Math. Werke II, 641–666.Google Scholar
  39. 39.
    Inglis N.F.J., Liebeck M.W., Saxl J.: Multiplicity-free permutation representations of finite linear groups. Math. Z. 192, 329–337 (1986)CrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    Inglis N.F.J., Richardson R.W., Saxl J.: An explicit model for the complex representations of S n. Arch. Math. (Basel) 54, 258–259 (1990)CrossRefMATHMathSciNetGoogle Scholar
  41. 41.
    Inglis N.F.J., Saxl J.: An explicit model for the complex representations of the finite general linear groups. Arch. Math. (Basel) 57, 424–431 (1991)CrossRefMATHMathSciNetGoogle Scholar
  42. 42.
    G.D. James and A. Kerber, The Representation Theory of the Symmetric Group, Encyclopedia Math. Appl., 16, Addison-Wesley, Reading, MA, 1981.Google Scholar
  43. 43.
    V.F.R. Jones, In and around the origin of quantum groups, In: Prospects in Mathematical Physics, Contemp. Math., 437, Amer. Math. Soc., Providence, RI, 2007, pp. 101–126.Google Scholar
  44. 44.
    Jordan P., von Neumann J., Wigner E.: On an algebraic generalization of the quantum mechanical formalism. Ann. of Math. (2) 35, 29–64 (1934)CrossRefMathSciNetGoogle Scholar
  45. 45.
    Jordan P., Wigner E.P.: Über das Paulische Äquivalenzverbot. Z. Physik 47, 631–651 (1928)CrossRefMATHGoogle Scholar
  46. 46.
    Kawanaka N.: On the irreducible characters of the finite unitary groups. J. Math. Soc. Japan 29, 425–450 (1977)CrossRefMATHMathSciNetGoogle Scholar
  47. 47.
    Kawanaka N., Matsuyama H.: A twisted version of the Frobenius–Schur indicator and multiplicity-free permutation representations. Hokkaido Math. J. 19, 495–508 (1990)CrossRefMATHMathSciNetGoogle Scholar
  48. 48.
    L.S. Kazarin and E.I. Chankov, Finite simply reducible groups are solvable. (Russian), Mat. Sb., 201, no. 5 (2010), 27–40; translation in Sb. Math., 201 (2010), 655–668.Google Scholar
  49. 49.
    L.S. Kazarin and V.V. Yanishevskiĭ, On finite simply reducible groups, Algebra i Analiz, 19, no. 6 (2007), 86–116; translation in St. Petersburg Math. J., 19 (2008), 931–951.Google Scholar
  50. 50.
    Klyachko A.A.: Models for complex representations of the groups GL(n, q) and Weyl groups. Dokl. Akad. Nauk SSSR 261, 275–278 (1981)MathSciNetGoogle Scholar
  51. 51.
    King R.C.: Branching rules for \({{GL}(N) \supset \Sigma_m}\) and the evaluation of inner plethysms. J. Mathematical Phys. 15, 258–267 (1974)CrossRefMATHMathSciNetGoogle Scholar
  52. 52.
    A.A. Klyachko, Models for complex representations of groups GL(n, q), Mat. Sb. (N.S.), 120(162), no. 3 (1983), 371–386.Google Scholar
  53. 53.
    A.I. Kostrikin, Introduction to Algebra. Translated from the Russian by Neal Koblitz, Universitext, Springer-Verlag, 1982.Google Scholar
  54. 54.
    The Kourovka notebook. Unsolved problems in group theory. Sixteenth ed. Including archive of solved problems, (eds. V.D. Mazurov and E.I. Khukhro), Russian Academy of Sciences Siberian Division, Institute of Mathematics, Novosibirsk, 2006.Google Scholar
  55. 55.
    T.Y. Lam and T. Smith, On the Clifford–Littlewood–Eckmann groups: a new look at periodicity mod 8, In: Quadratic Forms and Real Algebraic Geometry, Corvallis, OR, 1986, Rocky Mountain J. Math., 19, Rocky Mountain Math. Consortium, Tempe, AZ, 1989, pp. 749–786.Google Scholar
  56. 56.
    Littlewood D.E.: Note on the anticommuting matrices of eddington. J. London Math. Soc. 9, 41–50 (1934)CrossRefGoogle Scholar
  57. 57.
    Mackey G.W.: On induced representations of groups. Amer. J. Math. 73, 576–592 (1951)CrossRefMATHMathSciNetGoogle Scholar
  58. 58.
    Mackey G.W.: Symmetric and anti symmetric Kronecker squares and intertwining numbers of induced representations of finite groups. Amer. J. Math. 75, 387–405 (1953)CrossRefMATHMathSciNetGoogle Scholar
  59. 59.
    Mackey G.W.: Multiplicity free representations of finite groups. Pacific J. Math. 8, 503–510 (1958)CrossRefMATHMathSciNetGoogle Scholar
  60. 60.
    Marberg E.: Generalized involution models for wreath products. Israel J. Math. 192, 157–195 (2012)CrossRefMATHMathSciNetGoogle Scholar
  61. 61.
    J. McKay, Graphs, singularities, and finite groups, In: The Santa Cruz Conference on Finite Groups, Univ. California, Santa Cruz, California, 1979, Proc. Sympos. Pure Math., 37, Amer. Math. Soc., Providence, RI, 1980, pp. 183–186.Google Scholar
  62. 62.
    Okounkov A., Vershik A.M.: A new approach to representation theory of symmetric groups. Selecta Math. (N.S.) 2, 581–605 (1996)CrossRefMATHMathSciNetGoogle Scholar
  63. 63.
    Prasad D.: Trilinear forms for representations of GL(2) and local ɛ-factors. Compositio Math. 75, 1–46 (1990)MATHMathSciNetGoogle Scholar
  64. 64.
    Racah G.: Theory of complex spectra. I. Phys. Rev. 61, 186–197 (1942)CrossRefGoogle Scholar
  65. 65.
    Racah G.: Theory of complex spectra. II. Phys. Rev. 62, 438–462 (1942)CrossRefGoogle Scholar
  66. 66.
    Racah G.: Group theory and spectroscopy. Ergeb. Exakt. Naturwiss. 37, 28–84 (1965)MathSciNetGoogle Scholar
  67. 67.
    Radon J.: Lineare Scharen orthogonaler matrizen. Abh. Math. Sem. Univ. Hamburg 1, 1–14 (1922)CrossRefMathSciNetGoogle Scholar
  68. 68.
    F. Sasaki, M. Sekiya, T. Noro, K. Ohtsuki and Y. Osanai, Non-Relativistic Configuration Interaction Calculations for Many-Electron Atoms: ATOMCI, In: MOTECC: Modern Techniques in Computational Chemistry, (ed. E. Clementi), Chapter 3, ESCOM Science Publishers, 1991.Google Scholar
  69. 69.
    Scarabotti F., Tolli F.: Harmonic analysis on a finite homogeneous space. Proc. Lond. Math. Soc. (3) 100, 348–376 (2010)CrossRefMATHMathSciNetGoogle Scholar
  70. 70.
    Scarabotti F., Tolli F.: Harmonic analysis on a finite homogeneous space II: the Gelfand–Tsetlin decomposition. Forum Math. 22, 897–911 (2010)CrossRefMathSciNetGoogle Scholar
  71. 71.
    F. Scarabotti and F. Tolli, Induced representations and harmonic analysis on finite groups, preprint, arXiv:1304.3366.
  72. 72.
    B. Simon, Representations of Finite and Compact Groups, Grad. Stud. Math., 10, Amer. Math. Soc., Providence, RI, 1996.Google Scholar
  73. 73.
    Strunkov S.P.: On the ordering of characters of simply reducible groups. (Russian). Mat. Zametki 31, 357–362 (1982)MathSciNetGoogle Scholar
  74. 74.
    van Zanten A.J., de Vries E.: Criteria for groups with representations of the second kind and for simple phase groups. Canad. J. Math. 27, 528–544 (1975)CrossRefMATHMathSciNetGoogle Scholar
  75. 75.
    A.M. Vershik and A. Okounkov, A new approach to representation theory of symmetric groups. II. (Russian), Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 307 (2004), Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 10, 57–98; translation in J. Math. Sci. (N. Y.), 131 (2005), 5471–5494.Google Scholar
  76. 76.
    Vinroot C.R.: Twisted Frobenius–Schur indicators of finite symplectic groups. J. Algebra 293, 279–311 (2005)CrossRefMATHMathSciNetGoogle Scholar
  77. 77.
    Vinroot C.R.: Involutions acting on representations. J. Algebra 297, 50–61 (2006)CrossRefMATHMathSciNetGoogle Scholar
  78. 78.
    Wigner E.P.: On representations of certain finite groups. Amer. J. Math. 63, 57–63 (1941)CrossRefMathSciNetGoogle Scholar
  79. 79.
    E.P. Wigner, Group Theory: And Its Application to the Quantum Mechanics of Atomic Spectra. Expanded and improved ed. Translated from the German by J.J. Griffin, Pure and Applied Physics, 5, Academic Press, New York-London, 1959.Google Scholar
  80. 80.
    E.P. Wigner, On the matrices which reduce the Kronecker products of representations of S.R. groups, In: Quantum Theory of Angular Momentum, (eds. L.C.Biedenharn and H.van Dam), Academic Press, New York, 1964, pp. 87–133.Google Scholar
  81. 81.
    E.P. Wigner, On the isotropic harmonic oscillator, In: Spectroscopic and Group Theoretical Methods in Physics, Racah Memorial Volume, (eds. F. Bloch, S.G. Cohen, A. De-Shalit, S. Sambursky and I. Talmi), North-Holland Publishing Co., Amsterdam, 1968.Google Scholar
  82. 82.
    E.P. Wigner, Restriction of irreducible representations of groups to a subgroups, Proc. Roy. Soc. London Ser. A, 322, no. 1549 (1971), 181–189.Google Scholar

Copyright information

© The Mathematical Society of Japan and Springer Japan 2014

Authors and Affiliations

  • Tullio Ceccherini-Silberstein
    • 1
  • Fabio Scarabotti
    • 2
  • Filippo Tolli
    • 3
  1. 1.Dipartimento di IngegneriaUniversità del SannioBeneventoItaly
  2. 2.Dipartimento SBAISapienza Università di RomaRomaItaly
  3. 3.Dipartimento di Matematica e FisicaUniversità Roma TRERomaItaly

Personalised recommendations